Gavrilovska, L., Rakovic, V., Atanasovski, V. Vision towards 5G: technical requirements and potential enablers. Wyrel. Perth. common. 87731–757 (2016).
Vannithamby, R. & Talwar, S. Towards 5G: Applications, requirements, and candidate technologies (Wiley, 2017).
Google Scholar
Jung, J. other. Design of a high gain and low mutual coupling multi-input multi-output antenna based on PRS for 28 GHz applications. electronics 124286 (2023).
Restrepo, J. 5G International Framework Spectrum Allocation.in Proceedings of the European Conference on Information and Communication Technology. CIS 30–31 (2019).
Huang, I.-J. other. 28 GHz and 38 GHZ dual-band vertical stack dipole antenna on flexible liquid crystal polymer substrate for mmWave 5G cellular handsets. IEEE Trans. Antenna propagation. 703223–3236 (2021).
Rapaport, TS other. Millimeter wave mobile communications for 5G cellular: it works! IEEE access 1335–349 (2013).
Hussein, M. other. Design and characterization of a compact broadband antenna and its MIMO configuration for 28 GHz 5G applications. electronics 11523 (2022).
Farahat, AE and Hussein, KF Dual-band (28/38 GHz) wideband MIMO antenna for 5G mobile applications. IEEE access Ten, 32213-32223. https://doi.org/10.1109/ACCESS.2022.3160724 (2022).
Barzegari, R., Ghobadi, C., Nourinia, J. & Shokri, M. Dual-band dipole array antenna with fan-beam characteristics for c- and x-band applications. IEEE access 11, 67330-67338. https://doi.org/10.1109/ACCESS.2023.3291417 (2023).
Monfaldini, A. other. Dual-band mm-wave kinetic inductance camera for the IRAM 30 m telescope. Astrophy. J. Suppl. Sir. 19424 (2011).
Ashraf, N., Haraz, O., Ashraf, MA, Alshebeili, S. 28/38 GHz dual-band mm-wave SIW array antenna with EBG structure for 5G applications.in 2015 International Information and Communication Technology Research Conference (ICTRC) 5-8. https://doi.org/10.1109/ICTRC.2015.7156407 (2015).
Jain, V., Javid, B. & Heydari, P. BiCMOS dual-band millimeter-wave frequency synthesizer for automotive radar. IEEE J. Solid State Circuits 44, 2100–2113. https://doi.org/10.1109/JSSC.2009.2022299 (2009).
Han, C.-Z., Huang, G.-L., Yuan, T., Sim, C.-Y.-D. Dual-band mmWave antenna for 5G mobile applications.in 2019 IEEE Antennas and Propagation International Symposium and USNC-URSI Radio Science Conference 1083-1084. https://doi.org/10.1109/APUSNCURSINRSM.2019.8888328 (2019).
Awan, Washington other. Design and characterization of a wideband printed antenna based on DGS for 28 GHZ 5G applications. J. Electromagn. engineering science. twenty one177–183 (2021).
Ahmad, A., Choi, D.-Y. & Ullah, S. Compact two-element MIMO antenna for 5G communications. Science.Member of Parliament 123608 (2022).
Ahmad, A. & Choi, D.-Y. A compact eight-element MIMO antenna with reduced mutual coupling and beam scanning performance. sensor twenty two8933 (2022).
Sghaier, N., Belkadi, A., Hassine, IB, Latrach, L., Gharsallah, A. Millimeter-wave dual-band MIMO antenna for 5G wireless applications. J. Infrared Milim.terahertz wave 44297–312 (2023).
Sabek, AR, Ali, WA & Ibrahim, AA Minimally coupled two-element MIMO antenna with dual bands (28/38 GHZ) for 5G wireless communications. J. Infrared Milim.terahertz wave 43335–348 (2022).
Tsao, Y.-F., Desai, A., Hsu, H.-T. Dual-band and dual-polarization CPW-fed MIMO antenna for 28 GHz and 38 GHz 5th generation mobile communication technology. IEEE access Ten46853–46863 (2022).
Hasan, MN, Bashir, S. & Chu, S. Dual-band omnidirectional mm-wave antenna for 5G communications. J. Electromagn. Waves Appl. 331581–1590 (2019).
Aghoutane, B., Das, S., Ghzaoui, ME, Madhav, B. & El Faylali, H. A new dual-band high-gain 4-port mmWave MIMO antenna array for 28/37 GHZ 5G applications. AEU International J. electron. common. 145154071 (2022).
Abdelazeem, I., Ibrahim, A. & Abdalla, M. Frequency reconfigurable based antennas utilizing coding metasurfaces for future 5g applications.in 2019 13th International Conference on New Wave Phenomenon Artificial Materials (Metamaterials) X–001 (IEEE, 2019).
El-Sewedy, MF, Abdalla, MA & Elregely, HA Highly directional Fabry-Perot cavity antenna using reflective metasurfaces for 5G applications.in 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Conference817–818 (IEEE, 2020).
Lin, FH, Chen, ZN, Liu, W. Metamaterial-based broadband circularly polarized aperture-fed grid slot patch antenna.in 2015 IEEE 4th Asia Pacific Conference on Antennas and Propagation (APCAP) 353–354 (IEEE, 2015).
Ali, J., Ahmad, A., Choi, D.-Y. Metalens design for on- and off-center focusing using amorphous silicon hydride (a-Si:H)-based 1D arrays in the visible spectrum. electronics 122953 (2023).
Murthy, N. Improved insulating metamaterials inspired by mmWave MIMO dielectric resonator antennas for 5G applications. Progress Electromagn. Resolution C 100247–261 (2020).
Esmail, BA & Koziel, S. Design and optimization of a metamaterial-based dual-band 28/38 GHZ 5G MIMO antenna with modified ground for improved isolation and bandwidth. IEEE Antennas and Radio Propagation Letter (2022).
Hasan, M.M. other. Enhancing wideband MIMO antenna gain and isolation using metasurfaces for 5G sub-6 GHZ communication systems. Science.Member of Parliament 129433 (2022).
Khajeh-Khalili, F., Honarvar, MA, Naser-Moghadasi, M. & Dolatshahi, M. Gain enhancement and mutual coupling reduction in multi-input multi-output antennas for mm-wave applications using two new metamaterial structures. . internal. J.RFMicrou. Calculate. Assisted Engineering. 30e22006 (2020).
Esmail, BA & Koziel, S. Highly isolated metamaterial-based dual-band MIMO antenna for 5G mmWave applications. AEU International J. electron. common. 158154470 (2023).
munk, virginia Frequency selective surfaces: theory and design (Wiley, 2005).
Google Scholar
Milius, C. other. Metamaterial-inspired antennas: A review of state-of-the-art technology and future design challenges. IEEE access 989846–89865 (2021).
Chen, X., Grzegorczyk, TM, Wu, B.-I., Pacheco, J. Jr. & Kong, JA A robust method for obtaining configuration-effective parameters of metamaterials. Physics. Rev.E 70016608 (2004).
Cao, X., Xia, Y., Wu, L. & Wu, X. Tri-band MIMO antenna design based on characteristic mode operation. AEU International J. electron. common. 155154318 (2022).
Saurabh, AK, Dubey, R. & Meshram, MK Wideband 8-element MIMO antenna with band-dispersion characteristics. AEU International J. electron. common. 155154344 (2022).
Hussein, N. other. A compact wideband patch antenna and its MIMO configuration for 28 GHz applications. AEU International J. electron. common. 132153612 (2021).
Hussain, N., Jeong, M.-J., Park, J. & Kim, N. Wideband circularly polarized Fabry-Perot resonant antenna with single-layer PRS for 5G MIMO applications. IEEE access 7, 42897–42907. https://doi.org/10.1109/ACCESS.2019.2908441 (2019).
Khalid, M. other. 4-port MIMO antenna with defective ground structure for 5G mmWave applications. electronics 971 (2020).
Hussein, M. other. Improving the isolation of parasitic-loaded dual-band MIMO antennas for mmWave applications. micromachine 131918 (2022).
Wang, M., Li, F., Li, Y., Jing, X. Highly isolated dual polarization antenna array with coplanar parasitic decoupling walls. AEU International J. electron. common. 150154203 (2022).