Park, Y., Adachi, F., editors. Enhanced radio access technologies for next generation mobile communication. Dordrecht: Springer; (2007).
History of mobile phones and the first mobile phone, https://www.uswitch.com/mobiles/guides/history-of-mobile-phones, accessed: 07.01.2022.
5G technology and networks (speed, use cases, rollout), https://www.thalesgroup.com/en/markets/digital-identity-and-security/mobile/inspired/5G#, accessed: 07.01.2022.
Holma, Harry and Viswanathan, Harish and Mogenses, Preben Extreme massive MIMO for macro cell capacity boost in 5G-Advanced and 6G, White Paper, (2021).
Yu, Y., Zhang, Y. & Zhu, J. Monolithic silicon micromachined Ka-band filters. In 2008 International Conference on Microwave and Millimeter Wave Technology (Vol. 3, pp. 1397–1400). IEEE (2008).
Ali, M. et al. First demonstration of compact, ultra-thin low-pass and bandpass filters for 5G small-cell applications. IEEE Microw. Wireless Components Lett. 28, 1110–1112 (2018).
Google Scholar
Bhugra, H., Piazza, G., editors. Piezoelectric MEMS resonators. New York, NY, USA:: Springer International Publishing; (2017).
Hashimoto, K. Y., Hashimoto, K. Y. Surface acoustic wave devices in telecommunications. Berlin: Springer-Verlag; (2000).
Intensifying Technology Competition in the Acoustic Wave Filter Market, https://www.microwavejournal.com/articles/print/34710, accessed: 07.18.2022.
Hashimoto, KY. RF bulk acoustic wave filters for communications. Artech House (2009).
Bauer, T., Eggs, C., Wagner, K. & Hagn, P. A bright outlook for acoustic filtering: A new generation of very low-profile SAW, TC SAW, and BAW devices for module integration. IEEE Microwave Mag. 16, 73–81 (2015).
Google Scholar
Lee, S. H. et al. Epitaxially grown GaN thin-film SAW filter with high velocity and low insertion loss. IEEE Trans. Electron Dev. 48, 524–529 (2001).
Google Scholar
Takai, T. et al. IHP SAW technology and its application to microacoustic components. In 2017 IEEE International Ultrasonics Symposium (IUS) Sep 6 (pp. 1–8). IEEE (2017).
Kirsch, P. et al. Combination of e-beam lithography and of high velocity AlN/diamond-layered structure for SAW filters in X band. IEEE Trans. Ultrasonics, Ferroelectrics Frequency Control 54, 1486–1491 (2007).
Google Scholar
Hachigo, A, Nakahata, H, Itakura, K, Fujii, S, Shikata, S. 10 GHz narrow band SAW filters using diamond. In 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No. 99CH37027) Oct 17 (Vol. 1, pp. 325–328). IEEE (1999).
Olsson, R. H., Fleming, J. G., Wojciechowski, K. E., Baker, M. S., Tuck, M. R. Post-CMOS compatible aluminum nitride MEMS filters and resonant sensors. In2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum May 29 (pp. 412–419). IEEE (2007).
Ruby, R.C., Bradley, P., Oshmyansky, Y., Chien, A., Larson, J. D. Thin film bulk wave acoustic resonators (FBAR) for wireless applications. In 2001 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No. 01CH37263) Oct 7 (Vol. 1, pp. 813–821). IEEE (2001).
Pinto, R. M., Gund, V., Dias, R. A., Nagaraja, K. K. & Vinayakumar, K. B. CMOS-Integrated aluminum nitride MEMS: a review. J. Microelectromech. Syst. 31, 500–523 (2022).
Google Scholar
Calayir, Enes, Merugu, Srinivas, Lee, Jaewung, Singh, Navab, Piazza, Gianluca. (2021). Heterogeneously Integrated Aluminum Nitride MEMS Resonators and Filters. https://doi.org/10.1002/9783527823239.ch7.
Liu, X. et al. Post-CMOS compatible aluminum scandium nitride/2D channel ferroelectric field-effect-transistor memory. Nano Lett. 21, 3753–3761 (2021).
Google Scholar
Chen, L. et al. Scandium-doped aluminum nitride for acoustic wave resonators, filters, and ferroelectric memory applications. ACS Appl. Electron. Mater. 5, 612–622 (2022).
Google Scholar
Liu, X et al. A CMOS compatible aluminum scandium nitride-based ferroelectric tunnel junction memristor. arXiv preprint arXiv:2012.10019. (2020).
Ylilammi, M., Ella, J., Partanen, M. & Kaitila, J. Thin film bulk acoustic wave filter. IEEE Trans. Ultrasonics Ferroelectrics Frequency Control 49, 535–539 (2002).
Google Scholar
Schaffer, Z., Simeoni, P. & Piazza, G. 33 GHz overmoded bulk acoustic resonator. IEEE Microw. Wireless Components Lett. 32, 656–659 (2022).
Google Scholar
Hara, M. et al. Super-high-frequency band filters configured with air-gap-type thin-film bulk acoustic resonators. Jpn J. Appl. Phys. 49, 07HD13 (2010).
Google Scholar
Ruby, R.C., Merchant, P.P., inventors; Hewlett Packard Co, assignee. Tunable thin film acoustic resonators and method for making the same. United States patent US 5,587,620 (1996).
Vetury, R., Hodge, M. D., Shealy, J.B. High power, wideband single crystal XBAW technology for sub-6 GHz micro RF filter applications. In2018 IEEE International Ultrasonics Symposium (IUS) Oct 22 (pp. 206–212). IEEE (2018).
Lakin, K. M., McCarron, K. T., Rose, R. E. Solidly mounted resonators and filters. In 1995 IEEE Ultrasonics Symposium. Proceedings. An International Symposium Nov 7 (Vol. 2, pp. 905–908). IEEE (1995).
Piazza, G., Stephanou, P. J. & Pisano, A. P. Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators. J. Microelectromech. Syst. 15, 1406–1418 (2006).
Google Scholar
Rinaldi, M., Zuniga, C. & Piazza, G. 5–10 GHz AlN contour-mode nanoelectromechanical resonators. In 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems Jan 25 (pp. 916–919). IEEE (2009).
Gong, S. & Piazza, G. Design and analysis of lithium-niobate-based high electromechanical coupling RF-MEMS resonators for wideband filtering. IEEE Trans. Microwave Theory Techniques 61, 403–414 (2012).
Google Scholar
Chen, G. & Rinaldi, M. Aluminum nitride combined overtone resonators for the 5G high frequency bands. J. Microelectromech. Syst. 29, 148–159 (2020).
Google Scholar
Yang, Y., Lu, R., Gao, L. & Gong, S. 10-60-GHz electromechanical resonators using thin-film lithium niobate. IEEE Trans. Microw. Theory Tech. 68, 5211–5220 (2020).
Google Scholar
Plessky, V. et al. Laterally excited bulk wave resonators (XBARs) based on thin Lithium Niobate platelet for 5GHz and 13 GHz filters. In2019 Ieee Mtt-S International Microwave Symposium (Ims) Jun 2 (pp. 512–515). IEEE (2019).
Kramer, J. et al. Thin-Film Lithium Niobate Acoustic Resonator with High Q of 237 and k 2 of 5.1% at 50.74 GHz. In2023 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS) May 15 (pp. 1–4). IEEE (2023).
Cassella, C., Hui, Y., Qian, Z., Hummel, G. & Rinaldi, M. Aluminum nitride cross-sectional Lamé mode resonators. J. Microelectromech. Syst. 25, 275–285 (2016).
Google Scholar
Assylbekova, M. et al. 11 GHz lateral-field-excited aluminum nitride cross-sectional Lamé mode resonator. In 2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF) Jul 19 (pp. 1–4). IEEE (2020).
Assylbekova, M., Chen, G., Pirro, M., Michetti, G. & Rinaldi, M. Aluminum nitride combined overtone resonator for millimeter wave 5G applications. In2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS) Jan 25 (pp. 202–205). IEEE 2021.
Akiyama, M., Kano, K. & Teshigahara, A. Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films. Appl. Phys. Lett. 95 (2009).
Caro, M. A. et al. Piezoelectric coefficients and spontaneous polarization of ScAlN. J. Phys.: Condensed Matter 27, 245901 (2015).
Google Scholar
Esteves, G. et al. Al0. 68Sc0. 32N Lamb wave resonators with electromechanical coupling coefficients near 10.28%. Appl. Phys. Lett. 118 (2021).
Park, M. et al. A 10 GHz single-crystalline scandium-doped aluminum nitride Lamb-wave resonator. In2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII) Jun 23 (pp. 450–453). IEEE (2019).
Giribaldi, G. et al. X-band multi-frequency 30% compound SCALN microacustic resonators and filters for 5G-advanced and 6G applications. In2022 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS) Apr 24 (pp. 1–4). IEEE (2022).
Giribaldi, G., Colombo, L., Bersano, F., Cassella, C. & Rinaldi, M. Investigation on the Impact of Scandium-doping on the kt2 of ScxAl1-xN Cross-sectional Lamé Mode Resonators. In 2020 IEEE International Ultrasonics Symposium (IUS) Sep 7 (pp. 1–4). IEEE (2020).
Giribaldi, G., Simeoni, P., Colombo, L. & Rinaldi, M. High-Crystallinity 30% Scaln Enabling High Figure of Merit X-Band Microacoustic Resonators for Mid-Band 6G. In 2023 IEEE 36th International Conference on Micro Electro Mechanical Systems (MEMS) Jan 15 (pp. 169–172). IEEE (2023).
Yasuoka, S. et al. Effects of deposition conditions on the ferroelectric properties of (Al1-xScx) N thin films. J. Appl. Phys. 128 (2020).
Su, J. et al. Growth of highly c-axis oriented AlScN films on commercial substrates. Micromachines 13, 783 (2022).
Google Scholar
Pirro, M. et al. Characterization of dielectric and piezoelectric properties of ferroelectric alscn thin films. In 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS) Jan 25 (pp. 646–649). IEEE (2021).
Sandu, C. S. et al. Abnormal grain growth in AlScN thin films induced by complexion formation at crystallite interfaces. Physica Status Solidi A 216, 1800569 (2019).
Google Scholar
Liu, C., Chen, B., Li, M., Zhu, Y. & Wang, N. Evaluation of the impact of abnormally orientated grains on the performance of ScAlN-based laterally coupled alternating thickness (LCAT) mode resonators and Lamb wave mode resonators. In2020 IEEE International Ultrasonics Symposium (IUS) Sep 7 (pp. 1–3). IEEE (2020).
Nam, S et al. An mm-Wave Trilayer AlN/ScAlN/AlN Higher Order Mode FBAR. IEEE Microwave Wireless Technol. Lett. (2023).
Fiagbenu, MM et al. A K-Band Bulk Acoustic Wave Resonator Using Periodically Poled Al 0.72 Sc 0.28 N. IEEE Electron Dev. Lett. (2023).
Zhao, W et al. 15-GHz Epitaxial AlN FBARs on SiC Substrates. IEEE Electron Dev. Lett. (2023).
Mo, D., Dabas, S., Rassay, S. & Tabrizian, R. Complementary-switchable dual-mode SHF scandium aluminum nitride BAW resonator. IEEE Trans. Electron Dev. 69, 4624–4631 (2022).
Google Scholar
Vetury, R et al. A manufacturable alscn periodically polarized piezoelectric film bulk acoustic wave resonator (alscn p3f baw) operating in overtone mode at x and ku band. In 2023 IEEE/MTT-S International Microwave Symposium-IMS 2023 (pp. 891–894). IEEE (2023).
Feld, DA, Parker, R, Ruby, R, Bradley, P, Dong, S. After 60 years: A new formula for computing quality factor is warranted. In2008 IEEE Ultrasonics Symposium (pp. 431–436). IEEE (2008).
Chen, G, Cassella, C, Wu, T, Rinaldi, M. Single-chip multi-frequency wideband filters based on aluminum nitride cross-sectional Lamé mode resonators with thick and apodized electrodes. In 2018 IEEE Micro Electro Mechanical Systems (MEMS) Jan 21 (pp. 775–778). IEEE (2018).
Giovannini, M, Yazici, S, Kuo, NK, & Piazza, G. Spurious mode suppression via apodization for 1 GHz AlN contour-mode resonators. In 2012 IEEE International Frequency Control Symposium Proceedings May 21 (pp. 1–5). IEEE (2012).
Gong, S. & Piazza, G. Figure-of-merit enhancement for laterally vibrating lithium niobate MEMS resonators. IEEE Trans. Electron Dev. 60, 3888–3894 (2013).
Google Scholar
Beaucejour, R. et al. Controlling residual stress and suppression of anomalous grains in aluminum scandium nitride films grown directly on silicon. J. Microelectromech. Syst. 31, 604–611 (2022).
Google Scholar
Pirro, M., Zhao, X., Herrera, B., Simeoni, P. & Rinaldi, M. Effect of substrate-RF on sub-200 nm Al0. 7Sc0. 3N thin films. Micromachines 13, 877 (2022).
Google Scholar
Lu, Y. et al. Surface morphology and microstructure of pulsed DC magnetron sputtered piezoelectric AlN and AlScN thin films. Physica Status Solidi A 215, 1700559 (2018).
Google Scholar
Shao, S. et al. High quality co-sputtering alscn thin films for piezoelectric lamb-wave resonators. J. Microelectromech. Syst. 31, 328–337 (2022).
Google Scholar
Giribaldi, G. et al. Compensation of Contact Nature-Dependent Asymmetry in The Leakage Current of Ferroelectric ScxAl1xN Thin-Film Capacitors. In2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS) Jan 25 (pp. 650–653). IEEE (2021).
Lin, C. M. et al. Temperature-compensated aluminum nitride Lamb wave resonators. IEEE transactions on ultrasonics, ferroelectrics, and frequency control 57, 524–532 (2010).
Google Scholar
Giribaldi, Gabriel, Colombo, Luca, and Rinaldi, M. 6-20 GHz 30% ScAlN Lateral Field-Excited Cross-sectional Lame’Mode Resonators for future mobile RF Front-Ends. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control (2023).