Close Menu
5gantennas.org5gantennas.org
  • Home
  • 5G
    • 5G Technology
  • 6G
  • AI
  • Data
    • Global 5G
  • Internet
  • WIFI
  • 5G Antennas
  • Legacy

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

What's Hot

4 Best Wi-Fi Mesh Networking Systems in 2024

September 6, 2024

India is on the brink of a new revolution in telecommunications and can lead the world with 6G: Jyotiraditya Scindia

August 29, 2024

Speaker Pelosi slams California AI bill headed to Governor Newsom as ‘ignorant’

August 29, 2024
Facebook X (Twitter) Instagram
Facebook X (Twitter) Instagram
5gantennas.org5gantennas.org
  • Home
  • 5G
    1. 5G Technology
    2. View All

    Deutsche Telekom to operate 12,500 5G antennas over 3.6 GHz band

    August 28, 2024

    URCA Releases Draft “Roadmap” for 5G Rollout in the Bahamas – Eye Witness News

    August 23, 2024

    Smart Launches Smart ZTE Blade A75 5G » YugaTech

    August 22, 2024

    5G Drone Integration Denmark – DRONELIFE

    August 21, 2024

    Hughes praises successful private 5G demo for U.S. Navy

    August 29, 2024

    GSA survey reveals 5G FWA has become “mainstream”

    August 29, 2024

    China Mobile expands 5G Advanced, Chunghwa Telecom enters Europe

    August 29, 2024

    Ateme and ORS Boost 5G Broadcast Capacity with “World’s First Trial of IP-Based Statmux over 5G Broadcast” | TV Tech

    August 29, 2024
  • 6G

    India is on the brink of a new revolution in telecommunications and can lead the world with 6G: Jyotiraditya Scindia

    August 29, 2024

    Vodafonewatch Weekly: Rural 4G, Industrial 5G, 6G Patents | Weekly Briefing

    August 29, 2024

    Southeast Asia steps up efforts to build 6G standards

    August 29, 2024

    Energy efficiency as an inherent attribute of 6G networks

    August 29, 2024

    Finnish working group launches push for 6G technology

    August 28, 2024
  • AI

    Speaker Pelosi slams California AI bill headed to Governor Newsom as ‘ignorant’

    August 29, 2024

    Why Honeywell is betting big on Gen AI

    August 29, 2024

    Ethically questionable or creative genius? How artists are engaging with AI in their work | Art and Design

    August 29, 2024

    “Elon Musk and Trump” arrested for burglary in disturbing AI video

    August 29, 2024

    Nvidia CFO says ‘enterprise AI wave’ has begun and Fortune 100 companies are leading the way

    August 29, 2024
  • Data
    1. Global 5G
    2. View All

    Global 5G Enterprise Market is expected to be valued at USD 34.4 Billion by 2032

    August 12, 2024

    Counterpoint predicts 5G will dominate the smartphone market in early 2024

    August 5, 2024

    Qualcomm’s new chipsets will power affordable 5G smartphones

    July 31, 2024

    Best Super Fast Download Companies — TradingView

    July 31, 2024

    Crypto Markets Rise on Strong US Economic Data

    August 29, 2024

    Microsoft approves construction of third section of Mount Pleasant data center campus

    August 29, 2024

    China has invested $6.1 billion in state-run data center projects over two years, with the “East Data, West Computing” initiative aimed at capitalizing on the country’s untapped land.

    August 29, 2024

    What is the size of the clinical data analysis solutions market?

    August 29, 2024
  • Internet

    NATO believes Russia poses a threat to Western internet and GPS services

    August 29, 2024

    Mpeppe grows fast, building traction among Internet computer owners

    August 29, 2024

    Internet Computer Whale Buys Mpeppe (MPEPE) at 340x ROI

    August 29, 2024

    Long-term internet computer investor adds PEPE rival to holdings

    August 29, 2024

    Biden-Harris Administration Approves Initial Internet for All Proposals in Mississippi and South Dakota

    August 29, 2024
  • WIFI

    4 Best Wi-Fi Mesh Networking Systems in 2024

    September 6, 2024

    Best WiFi deal: Save $200 on the Starlink Standard Kit AX

    August 29, 2024

    Sonos Roam 2 review | Good Housekeeping UK

    August 29, 2024

    Popular WiFi extender that eliminates dead zones in your home costs just $12

    August 29, 2024

    North American WiFi 6 Mesh Router Market Size, Share, Forecast, [2030] – அக்னி செய்திகள்

    August 29, 2024
  • 5G Antennas

    Nokia and Claro bring 5G to Argentina

    August 27, 2024

    Nokia expands FWA portfolio with new 5G devices – SatNews

    July 25, 2024

    Deutsche Telekom to operate 12,150 5G antennas over 3.6 GHz band

    July 24, 2024

    Vodafone and Ericsson develop a compact 5G antenna in Germany

    July 12, 2024

    Vodafone and Ericsson unveil new small antennas to power Germany’s 5G network

    July 11, 2024
  • Legacy
5gantennas.org5gantennas.org
Home»Data»With super SDMs (machine learning, open access big data, and the cloud) towards more holistic global squirrel hotspots and coldspots
Data

With super SDMs (machine learning, open access big data, and the cloud) towards more holistic global squirrel hotspots and coldspots

5gantennas.orgBy 5gantennas.orgMarch 3, 2024No Comments9 Mins Read
Facebook Twitter Pinterest LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest WhatsApp Email


  • Davis, M., Faurby, S. & Svenning, J. C. Mammal diversity will take millions of years to recover from the current biodiversity crisis. Proc. Natl. Acad. Sci. 115(44), 11262–11267 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De León, L. F., Silva, B., Avilés-Rodríguez, K. J. & Buitrago-Rosas, D. Harnessing the omics revolution to address the global biodiversity crisis. Curr. Opin. Biotechnol. 80, 102901 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Steiner, M., & Huettmann, F. Sustainable Squirrel Conservation: A Modern Re-Assessment of Family Sciuridae. (Springer Nature: Cham, Switzerland 2023).

  • Burgin, C. J. et al. Illustrated Checklist of the Mammals of the World (Lynx Ediciones, 2020).

    Google Scholar 

  • Thorington Jr, R. W., Koprowski, J. L., Steele, M. A., & Whatton, J. F. Squirrels of the world. (JHU Press 2012).

  • Koprowski, J. L., & Nandini, R. Global hotspots and knowledge gaps for tree and flying squirrels. Curr. Sci. 851–856 (2008).

  • Regmi, G. R., & Huettmann, F. (Eds.). Hindu Kush-Himalaya watersheds downhill: Landscape ecology and conservation perspectives. (Springer International Publishing 2020).

  • Humphries, G., Magness, D.R., & Huettmann, F. Machine Learning for Ecology and Sustainable Natural Resource Management (Springer, Switzerland 2018).

  • Fernández-Delgado, M., Cernadas, E., Barro, S. & Amorim, D. Do we need hundreds of classifiers to solve real world classification problems?. J. Mach. Learn. Res. 15(1), 3133–3181 (2014).

    MathSciNet 

    Google Scholar 

  • Suber, P. Open access (p. 1–256). (The MIT Press, Cambridge 2012).

  • Sriram, S., & Huettmann, F. A Global model of predicted peregrine falcon (Falco peregrinus) distribution with open source GIS code and 104 open access layers for use by the global public. Earth Syst. Sci. Data Disc. 1–39 (unpublished).

  • Boulanger-Lapointe, N. et al. Herbivore species coexistence in changing rangeland ecosystems: First high resolution national open-source and open-access ensemble models for Iceland. Sci. Total Environ. 845, 157140 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hardy, S. M., Lindgren, M., Konakanchi, H., & Huettmann, F. Predicting the distribution and ecological niche of unexploited snow crab (Chionoecetes opilio) populations in Alaskan waters: A first open-access ensemble model. 608–622 (2011).

  • Huettmann, F. Advanced Data Mining (Cloning) of Predicted Climate-Scapes and Their Variances Assessed with Machine Learning: An Example from Southern Alaska Shows Topographical Biases and Strong Differences. Mach. Learn. Ecol. Sustain. Nat. Res. Manag. 227–241 (2018).

  • Meißner, K. et al. Distribution of benthic marine invertebrates at northern latitudes-An evaluation applying multi-algorithm species distribution models. J. Sea Res. 85, 241–254 (2014).

    Article 
    ADS 

    Google Scholar 

  • Elith, J. et al. Presence-only and presence-absence data for comparing species distribution modeling methods. Biodivers. Inf. 15(2), 69–80 (2020).

    Google Scholar 

  • Phillips, S. J. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19(1), 181–197 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Hart-Davis, G. Creating and Using Excel Database Tables. In Beginning Microsoft Office 2010 (pp. 393–411). (Berkeley, CA: Apress 2010).

  • Grillo, M., Huettmann, F., Guglielmo, L. & Schiaparelli, S. Three-dimensional quantification of copepods predictive distributions in the Ross Sea: First data based on a machine learning model approach and open access (FAIR) data. Diversity 14(5), 355 (2022).

    Article 

    Google Scholar 

  • Mi, C., Huettmann, F., Guo, Y., Han, X. & Wen, L. Why choose Random Forest to predict rare species distribution with few samples in large undersampled areas? Three Asian crane species models provide supporting evidence. PeerJ 5, e2849 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hijmans, R. J., & van Etten, J. raster: Geographic data analysis and modeling. R package version, 2(8) (2016).

  • Hijmans, R. J., & Elith, J. Species distribution modeling with R. R Cran Project (2013).

  • Bivand, R. et al. Package ‘rgeos’. The Comprehensive R Archive Network (CRAN) (2017).

  • Pebesma, E., Bivand, R., Pebesma, M. E., RColorBrewer, S., & Collate, A. A. A. Package ‘sp’. The Comprehensive R Archive Network (2012).

  • Urbanek, S. rJava: Low-level R to Java interface. http://www.rforge.net/rJava/ (2013).

  • Joseph, V. R. Optimal ratio for data splitting. Stat. Anal. Data Min. ASA Data Sci. J. 15(4), 531–538 (2022).

    Article 
    MathSciNet 

    Google Scholar 

  • Breiman, L. Statistical modeling: The two cultures (with comments and a rejoinder by the author). Stat. Sci. 16(3), 199–231 (2001).

    Article 

    Google Scholar 

  • Krauze-Gryz, D., Gryz, J. & Brach, M. Spatial organization, behaviour and feeding habits of red squirrels: Differences between an urban park and an urban forest. J. Zool. 315(1), 69–78 (2021).

    Article 

    Google Scholar 

  • Luckett, W.P., & Hartenberger, J.L. Evolutionary relationships among rodents: comments and conclusions. In Evolutionary relationships among rodents (pp. 685–712). Springer, Boston, MA (1985).

  • Nelson, D. D. et al. Francisella tularensis infection without lesions in gray tree squirrels (Sciurus griseus): A diagnostic challenge. J. Vet. Diagn. Invest. 26(2), 312–315 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Pearson, D. E. & Ruggiero, L. F. Test of the prey-base hypothesis to explain use of red squirrel midden sites by American martens. Can. J. Zool. 79(8), 1372–1379 (2001).

    Article 

    Google Scholar 

  • Pineda-Munoz, S., Wang, Y., Lyons, S. K., Tóth, A. B. & McGuire, J. L. Mammal species occupy different climates following the expansion of human impacts. Proc. Natl. Acad. Sci. 118(2), e1922859118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stein, B. A. States of the union: Ranking America’s biodiversity. (NatureServe 2002).

  • Cervellini, M. et al. Diversity of European habitat types is correlated with geography more than climate and human pressure. Ecol. Evol. 11(24), 18111–18124 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bookbinder, M. P., & Ledec, G. A conservation assessment of the terrestrial ecoregions of Latin America and the Caribbean. World Wildlife Fund and World Bank, Washington, DCFAO (2003) FAOs global estimate of mangroves. www.fao.org (1995).

  • Huettmann, F. (Ed.). Central American biodiversity: conservation, ecology, and a sustainable future (Springer 2015).

  • Morales-Marroquín, J. A., Solis Miranda, R., Baldin Pinheiro, J. & Zucchi, M. I. Biodiversity research in Central America: A regional comparison in scientific production using bibliometrics and democracy indicators. Front. Res. Metrics Anal. 7, 44 (2022).

    Google Scholar 

  • Reid, F. A field guide to mammals of North America, north of Mexico (Vol. 4). (Houghton Mifflin Harcourt 2006).

  • Aulagnier, S. Atlantoxerus getulus (errata version published in 2017). The IUCN Red List of Threatened Species 2016: e.T2358A115518165. https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T2358A22251981.en. Accessed on 03 February 2023.

  • Jacobson, A. P., Riggio, J., M Tait, A., & EM Baillie, J. Global areas of low human impact (‘Low Impact Areas’) and fragmentation of the natural world. Sci. Rep. 9(1), 1–13 (2019).

  • Bizhanova, N. et al. The Elusive Turkestan Lynx at the Northwestern edge of geographic range: Current suitable habitats and distribution forecast in the climate change. Sustainability 14(15), 9491 (2022).

    Article 

    Google Scholar 

  • Procheş, Ş., Ramdhani, S., Hughes, A. C., & Koh, L. P. Southeast Asia as one of world’s primary sources of biotic recolonization following anthropocene extinctions. Front. Ecol. Evol. 116.

  • Sodhi, N. S., & Brook, B. W. Southeast Asian biodiversity in crisis. (Cambridge University Press 2006).

  • Sodhi, N. S., Brook, B. W., & Bradshaw, C. J. Tropical conservation biology. (John Wiley & Sons 2013).

  • Sodhi, N. S. et al. Conserving Southeast Asian forest biodiversity in human-modified landscapes. Biol. Conserv. 143(10), 2375–2384 (2010).

    Article 

    Google Scholar 

  • Sodhi, N. S., Koh, L. P., Brook, B. W. & Ng, P. K. Southeast Asian biodiversity: An impending disaster. Trends Ecol. Evol. 19(12), 654–660 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Sodhi, N. S., Lee, T. M., Koh, L. P. & Brook, B. W. A meta-analysis of the impact of anthropogenic forest disturbance on Southeast Asia’s biotas. Biotropica 41(1), 103–109 (2009).

    Article 

    Google Scholar 

  • Sodhi, N. S. et al. The state and conservation of Southeast Asian biodiversity. Biodivers. Conserv. 19, 317–328. https://peerj.com/articles/11830/ (2010).

  • Awodoyin, R. O. et al. Indigenous fruit trees of tropical Africa: Status, opportunity for development and biodiversity management. Agric. Sci. 6(01), 31 (2015).

    Google Scholar 

  • Couvreur, T. L. et al. Tectonics, climate and the diversification of the tropical African terrestrial flora and fauna. Biol. Rev. 96(1), 16–51 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M., & Gascon, C. Global biodiversity conservation: the critical role of hotspots. In Biodiversity hotspots: distribution and protection of conservation priority areas, 3–22 (2011).

  • Reid, W. V. Biodiversity hotspots. Trends Ecol. Evol. 13(7), 275–280 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abreu-Jr, E. F. D. et al. Spatiotemporal diversification of tree squirrels: Is the South American invasion and speciation really that recent and fast?. Front. Ecol. Evol. 8, 230 (2020).

    Article 

    Google Scholar 

  • Hafner, M. S., Barkley, L. J. & Chupasko, J. M. Evolutionary genetics of New World tree squirrels (tribe Sciurini). J. Mammal. 75(1), 102–109 (1994).

    Article 

    Google Scholar 

  • Pečnerová, P. & Martínková, N. Evolutionary history of tree squirrels (Rodentia, Sciurini) based on multilocus phylogeny reconstruction. Zool. Script. 41(3), 211–219 (2012).

    Article 

    Google Scholar 

  • Hainsworth, F. R. Optimal body temperatures with shuttling: Desert antelope ground squirrels. Anim. Behav. 49(1), 107–116 (1995).

    Article 

    Google Scholar 

  • Bacon, C. D. et al. Geographic and taxonomic disparities in species diversity: Dispersal and diversification rates across Wallace’s line. Evolution 67(7), 2058–2071 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Van Oosterzee, P. Where worlds collide: the Wallace Line. (Cornell University Press 1997).

  • White, A. E., Dey, K. K., Stephens, M. & Price, T. D. Dispersal syndromes drive the formation of biogeographical regions, illustrated by the case of Wallace’s Line. Glob. Ecol. Biogeogr. 30(3), 685–696 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zurell, D., Fritz, S. A., Rönnfeldt, A., & Steinbauer, M. J. Predicting extinctions with species distribution models. Cambridge Prisms: Extinction 1–29 (2023).

  • Dasari, S., & Kaluri, R. Big data analytics, processing models, taxonomy of tools, V’s, and challenges: State-of-art review and future implications. Wirel. Commun. Mob. Comput. (2023).

  • Gulyaeva, M., Huettmann, F., Shestopalov, A., Okamatsu, M., Matsuno, K., Chu, D. H., & Bortz, E. Data mining and model-predicting a global disease reservoir for low-pathogenic Avian Influenza (AI) in the wider pacific rim using big data sets. Sci. Rep. 10(1), 16817.

  • Zabihi, K., Huettmann, F., & Young, B. Predicting multi-species bark beetle (Coleoptera: Curculionidae: Scolytinae) occurrence in Alaska: First use of open access big data mining and open source GIS to provide robust inference and a role model for progress in forest conservation. Biodivers. Inf. 16(1), 1–19.

  • Huettmann, F. Investigating Matschie’s Tree Kangaroos With ‘Modern’Methods: Digital Workflows, Big Data Project Infrastructure, and Mandated Approaches for a Holistic Conservation Governance. In Tree Kangaroos (pp. 379–391) (Academic Press 2021).

  • Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29(2), 129–151 (2006).

    Article 
    ADS 

    Google Scholar 

  • Robold, R. B. & Huettmann, F. High-resolution prediction of American red squirrel in Interior Alaska: A role model for conservation using open access data, machine learning GIS and LIDAR. PeerJ 9, e11830 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, X., Wen, S., Yan, L., Feng, J., & Xia, Y. A hybrid-convolution spatial–temporal recurrent network for traffic flow prediction. Comput. J. bxac171 (2022).

  • Babu, E. S., Rao, M. S., Swain, G., Nikhath, A. K. & Kaluri, R. Fog-Sec: Secure end-to-end communication in fog-enabled IoT network using permissioned blockchain system. Int. J. Netw. Manag. 33(5), e2248 (2023).

    Article 

    Google Scholar 

  • Komori, O., Eguchi, S., Saigusa, Y., Kusumoto, B. & Kubota, Y. Sampling bias correction in species distribution models by quasi-linear Poisson point process. Ecol. Inf. 55, 101015 (2020).

    Article 

    Google Scholar 

  • Ploton, P. et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 11(1), 4540 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleTaiko raises $37 million for Web3 infrastructure for censorship-free internet
    Next Article Morris II AI worm can steal sensitive data and infect ChatGPT and Gemini | Technology News
    5gantennas.org
    • Website

    Related Posts

    Crypto Markets Rise on Strong US Economic Data

    August 29, 2024

    Microsoft approves construction of third section of Mount Pleasant data center campus

    August 29, 2024

    China has invested $6.1 billion in state-run data center projects over two years, with the “East Data, West Computing” initiative aimed at capitalizing on the country’s untapped land.

    August 29, 2024
    Leave A Reply Cancel Reply

    You must be logged in to post a comment.

    Latest Posts

    4 Best Wi-Fi Mesh Networking Systems in 2024

    September 6, 2024

    India is on the brink of a new revolution in telecommunications and can lead the world with 6G: Jyotiraditya Scindia

    August 29, 2024

    Speaker Pelosi slams California AI bill headed to Governor Newsom as ‘ignorant’

    August 29, 2024

    Crypto Markets Rise on Strong US Economic Data

    August 29, 2024
    Don't Miss

    Business News | Communications Minister Scindia promotes 6G leadership and nationwide broadband in meeting with telecom operators

    By 5gantennas.orgAugust 24, 2024

    New Delhi [India]August 24 (ANI): Union Telecom Minister Jyotiraditya Scindia along with Minister of State…

    SingTel and SK Telecom prepare for the 6G future

    July 8, 2024

    Apple focuses on 6G for future iPhones

    December 11, 2023

    Subscribe to Updates

    Subscribe to our newsletter and never miss our latest news

    Subscribe my Newsletter for New Posts & tips Let's stay updated!

    About Us
    About Us

    Welcome to 5GAntennas.org, your reliable source for comprehensive information on 5G technology, artificial intelligence (AI), and data-related advancements. We are passionate about staying at the forefront of these cutting-edge fields and bringing you the latest insights, trends, and developments.

    Facebook X (Twitter) Pinterest YouTube WhatsApp
    Our Picks

    4 Best Wi-Fi Mesh Networking Systems in 2024

    September 6, 2024

    India is on the brink of a new revolution in telecommunications and can lead the world with 6G: Jyotiraditya Scindia

    August 29, 2024

    Speaker Pelosi slams California AI bill headed to Governor Newsom as ‘ignorant’

    August 29, 2024
    Most Popular

    Will 5G make 2024 the most connected year in the industry?

    December 1, 2023

    The current state of 5G in the US and how it can improve

    September 28, 2023

    How 5G technology will transform gaming on the go

    January 31, 2024
    © 2026 5gantennas. Designed by 5gantennas.
    • Home
    • About us
    • Contact us
    • DMCA
    • Privacy Policy
    • About Creator

    Type above and press Enter to search. Press Esc to cancel.