Wang, C.-X. other. The road to 6g: vision, requirements, key technologies, and testbeds. IEEE Commune. survive. Private tutor. twenty five905–974 (2023).
Bogale, T., Wang, X. & Le, L. Chapter 9 – Millimeter wave communication enabling technology for 5G wireless systems: Link level perspective.in Millimeter wave massive MIMO (Edited by Mumtaz, S. other.) (Academic Press, Cambridge, 2017).
Google Scholar
Shire, I., Abdo. Rahman, T., Hadri Azmi, M., and Islam, MR Practical measurement study on rainfall and rainfall attenuation conducted on his 26 GHz microwave 5G link system in Malaysia. IEEE access 619044–19064 (2018).
Arzobi, K. other. Effect of laminate on bending fatigue life of copper-coated PET substrates.in Advances in display technology.Electronic paper and flexible displays, vol. 7956, 79560X. International Society of Optics and Photonics (SPIE, 2011).
So, J. other. Reversibly deformable and mechanically tunable fluidic antennas. Advanced features. meter. 193632–3637 (2009).
Materials for flexible and printed electronics. Materials Matter, Aldrich Materials Science Sigma-Aldrich Co. LLC.
Zou, M., Hu, Z., Hua, C., Shen, Z. Design of graphene-based plasmonic rectangular ribbon antennas for terahertz band communications. Wiley Encycle. Electro. electronic.engineering 151–23 (2016).
Google Scholar
Kosta, YP, ChaIurvedi, BK, et al. Liquid Patch Microwave Antennas.in Proceedings of NACONECS-1989, Tata McGraw-Hill, Department of Electrical and Computer Engineering, Roorkee University, India.43–47 (1989).
Costa, YP Mercury patch micmwave antenna.in Center for Space Applications (ISRO), Proceedings of the International Conference on Smart Materials, Structures and Systems, Indian Institute of Science, Bangalore, India.701–706 (1999).
Dey, A., Guldiken, R., Mumcu, G. Microfluidically reconstituted broadband frequency tunable liquid metal monopole antenna. IEEE Trans. Antenna propagation. 642572–2576 (2016).
Hayes, G.J., So, J.-H., Qusba, A., Dickey, MD & Lazzi, G. Flexible liquid metal alloy (gain) microstrip patch antenna. IEEE Trans. Antenna propagation. 602151–2156 (2012).
Morishita, AM, Kitamura, CKY, Ohta, AT, Shiroma, WA Liquid metal monopole array with adjustable frequency, gain, and beam steering. IEEE antenna wire. Advertisement. Let. 121388–1391 (2013).
Bo, G., Ren, L., Xu, X., Du, Y., Dou, S. Recent advances in liquid metals and their applications. Advanced Physics. 3412–442 (2018).
Google Scholar
Dickey, M., Chiechi, R., Larsen, R., Weiss, E. & Whitesides, G. Eutectic gallium-indium (EGaIn): a liquid metal alloy for forming stable structures in microchannels at room temperature. . Advanced features. meter. 181097–1104 (2008).
Dash, S. & Patnaik, A. Material selection for THz antennas. Micro-row. option. technology. Let. 601183–1187 (2018).
Dash, S. & Patnaik, A. Advances in terahertz antenna design and its performance.in Next generation terahertz wireless communication network (CRC Press, USA, Taylor and Francis Group, 2021).
Dash, S. & Patnaik, A. Comparison of graphene plasmonic antenna performance with peers in low terahertz applications. plasmonics 132353–2360 (2018).
Varnava, C. Liquid metal takes stretchable circuits to new heights. nut. electronic. 252 (2019).
Zou, M., Shen, Z., Pan, J. Liquid antennas. Wiley Encycle. Electro. electronic.engineering 1–23 (2016).
Sruti, AN & Jagannadham, K. Electrical conductivity of graphene composites containing In and In-Ga alloys. J. electron. meter. 391268–1276 (2010).
Novoselov, Kansas other. Electric field effects in atomically thin carbon films. science 306666–669 (2004).
Marlinda, Arkansas other. Graphene in liquid-based form as a lubricant additive to reduce friction and wear. lubricant 111–27 (2023).
Yang, W. & Wang, C. Graphene and related conductive inks for flexible electronics. J. Mater. Chemistry. C Four7193–7207 (2016).
Golovachev, Y., Ettinger, A., Pinhasi, GA & Pinhasi, Y. Propagation characteristics of submillimeter waves in foggy conditions. J. Appl. Physics. 125151612 (2019).
Kumar, S., Dixit, AS, Malekar, RR, Raut, HD & Shevada, LK Fifth generation antennas: A comprehensive review of design and performance enhancement techniques. IEEE access 8163568–163593 (2020).
Ali Bakshikenari, M. other. Innovative antenna array with high element-to-element isolation for sub-6 GHz 5G MIMO communication systems. Science.Member of Parliament 121–13 (2022).
Marasco, I. other. An antenna that has evolved into a compact size for 5G communications. Science.Member of Parliament 121–11 (2022).
Marasco Partin, NO other. Efficient antenna system with improved radiation for multi-standard/multi-mode 5G cellular communications. Science.Member of Parliament 131–15 (2023).
Google Scholar
Hasan, M.M. other. Enhancing broadband mimo antenna gain and isolation using metasurfaces for 5G sub-6 GHz communication systems. Science.Member of Parliament 121–17 (2022).
Google Scholar
HFSS – High Frequency Structure Simulator. ANSYS HFSS version 21.
Gusynin, V., Sharapov, SG & Carbotte, JP Magneto-optical conductivity of graphene. J. Phys. Condense.Case 19026222 (2006).
Ling, K., Kim, HK, Yoo, M., Lim, S. Frequency-switchable metamaterial absorber infused with eutectic gallium-indium (EGain) liquid metal alloy. sensor 1528154–28165 (2015).
Xia, Y. & Whitesides, GM Soft lithography. Anjou. Chemistry. internal. Ed. 37550–575 (1998).
Rodrigo, D., Jofre, L., Cetiner, BA Circular beam steering reconfigurable antenna with liquid metal parasitics. IEEE Trans. Antenna propagation. 60, 1796–1802. https://doi.org/10.1109/TAP.2012.2186235 (2012).
Wan, Z., Zeng, H. & Feinerman, A. Reversible electrowetting of liquid metal droplets. J. Fluid Engineering 129, 388–394. https://doi.org/10.1109/TAP.2012.2186235 (2006).