IEEE 5G and Beyond Technology Roadmap, White Paper, IEEE Future Networks (2017).
Ojaroudiparchin, N., Shen M., Pedersen GF. Multi-layer 5G cellular antennas for multi-user MIMO communications. IEEE 23rd Telecommunications Forum, TELFOR (2015).
He, W., Xu, B., Gustafsson, M., Ying, Z., He, S. RF Compliance Study of Temperature Rise of a Human Head Model Around 28 GHz in 5G User Equipment Applications: Simulation Analysis, with a special section on Recent Advances in Wireless Access and Security Methods for 5G Networks. IEEE Access 6830–838 (2017).
Paola, C. D., S. Zhang, K. Zhao, Z. Yning, T. Bolin, and G. F. Pedersen. “Wideband beam steerable array with hybrid high gain antennas for 5G mobile devices.” IEEE Trans. Antennas Propag https://doi.org/10.1109/TAP.2019.2925189 (2019).
Dadgarpour, A., Zarghooni, B., Virdee, B. S. & Denidni, T. A. Improved evaluation of gain and tilt angle using metamaterial loading in mm-wave applications. IEEE Antennas Radio. Propagation. Letters. 15418–420 (2015).
Ruan, X. & Chen, C. H. End-fire circularly polarized complementary antenna arrays for 5G applications. IEEE Trans. Antenna Propagation 68(1), 266-274 (2019).
Puskely, J., Mikulasek, T., Raida, Z. Design of compact wideband antenna arrays for microwave imaging applications. Radio English twenty two(4), 1224–1232 (2013).
Google Academic
Briqech, Z., Sebak, AR & Denidni, TA. Low-cost wideband mmWave phased array using piezoelectric transducers for 5G applications. IEEE Trans. Antenna Propagation 65(12), 6403–6412 (2017).
Zhu, Sh., Liu, H., Chen, Zh., and Wen, P. A compact, gain-enhanced Vivaldi antenna array with suppressed mutual coupling for 5G mmWave applications. IEEE Antennas Radio. Propagation. Letters. 17(5), 776–779 (2018).
Hwang, IJ, Ahn, BK, Chae, SCh., Yu, JW & Lee, WW Quasi-Yagi antenna array with improved folded dipole drivers for mmWave 5G cellular devices. IEEE Antennas Radio. Propagation. Letters. 18(5), 971–975 (2019).
Chen, Rui-Sen, Sai-Wai Wong, Guan-Long Huang, Yejun He, and Lei Zhu. “Bandwidth-Enhanced High-Gain Full-Metal Filtered Slot Antenna Array Using TE101 and TE301 Cavity Modes.” IEEE Antennas and Wireless Propagation Letters https://doi.org/10.1109/LAWP.2021.3100919 (2021).
Khan, R., Al-Hadi, A. and Soh, P. J. Recent advances in user impact mitigation of mobile terminal antennas: a review. IEEE Trans. Electromagn. Compat. 61(1), 279–287 (2019).
Hamed, T. & Maqsood, M. SAR calculations and temperature response of human exposure to electromagnetic radiation at 28, 40 and 60 GHz mmWave frequencies. Progressive Electromagnetics Research M 7347–59 (2018).
Vilagosh, Z., Lajevardipour, A., Wood, A. A computer simulation study of the penetration of 30, 60, and 90 GHz pulsed radiation into the human ear. Scientific Representative 10(1), 1–10 (2020).
Gultekin, DH & Siegel, PH Absorption of 5G radiation in brain tissue as a function of frequency. PowerTime IEEE Access 8115593–115612 (2020).
Morelli, MS, Gallucci, S., Siervo, B. & Hartwig, V. Numerical analysis of electromagnetic field exposure from 5G mobile communications at 28 GHZ in adult and child users in real-world exposure scenarios. International Environmental Studies Public Health 18(3), 107 (2021).
Gupta, S.H. “Analysis and Design of Substrate Integrated Waveguide-Based Antennas for Millimeter Waves,” Master’s Thesis, Department of Electrical and Computer Engineering, Concordia University, Canada, https://spectrum.library.concordia.ca/981274/ (2016).
Pozar, D.M. Microwave Engineering 4th edition (Wiley, 2011).
Google Academic
Pozar, D.M. & Schaubert, D. Microstrip Antennas: Analysis and Design of Microstrip Antennas and Arrays (Wiley, 1995).
Source:.
Lak, A., Adelpour, Z., Oraizi, H., Parhizgar, N. Three configurations of compact planar multi-stub microstrip antennas for mmW mobile applications. International Journal of Antenna Propagation. https://doi.org/10.1155/2021/8848218. (2021).
Khan, J., Sehrai, D.A., Ali, U. Dual-band 5G antenna array design with SAR analysis for future mobile devices. Electrical Engineering and Technology Journal 14(2), 809–816 (2018).
Lee, WW, Hwang, IJ & Jang, B. End-fire Vivaldi antenna array with wide fan beam for 5G mobile handsets. IEEE Access 8118299–118304 (2020).
Lak, A. & Oraizi, H. Evaluation of SAR distribution in a six-layer human head model. Int. J. Antenna Propagation 12(1), 56–64. https://doi.org/10.1155/2013/580872 (2013).
Lak, A. Human health effects of radio frequency and microwave fields. Journal of Basic and Applied Sciences 2(12), 12302–12305 (2012).
Google Academic
Ramundo-Orlando, A. Effects of millimeter wave radiation on cell membranes – a brief review. J. Infrared, millimeter waves, terahertz waves 31(12), 1400–1411 (2010).
Wang, H.-Y. etc. Specific absorption rates in different brain regions of rats exposed to electromagnetic plane waves. Scientific Representative 9(1), 1–13 (2019).
Karipidis, K., Mate, R., Urban, D., Tinker, R., Wood, A. 5G Mobile Networks and Health – A State-of-the-Art Science Review of Research on Low-Level RF Fields Above 6 GHz. J. Exposure Science and Environmental Epidemiology https://doi.org/10.1038/s41370-021-00297-6 (2021).
Wu, T., Rappaport, TS & Collins, CM The human body and millimeter wave wireless communication systems: interactions and impacts. IEEE International Communications Conference, London, UK. (2015).
Chahat, N., Zhadobov, M., Le Coq, L., Alekseev, S., Sauleau, R. Characterization of the interaction between 60 GHz antennas and the human body in off-body scenarios. IEEE Trans. Antenna Propagation 605958–5965 (2012).
Colombi, D., Thors, B., Törnevik, C. The impact of EMF exposure limits on output power levels of 5G devices above 6 GHz. IEEE Antennas Radio. Propagation. Letters. 141247–1249 (2015).
Zhao, K., Ying, Z., He, S. EMF Exposure Study on mmWave Phased Arrays in Mobile Devices for 5G Communications. IEEE Antennas Radio. Propagation. Letters. 151132–1135 (2015).
Belrhiti, L., Riouch, F., Tribak, A., Terhzaz, J., Sanchez, A. M. Dosimetric investigation in four human head models of planar monopole antennas with coupled feeds for LTE/WWAN/WLAN integrated mobile phones. J. Microwave Optoelectron. Electromagnetic Applications. 141247–1249 (2017).
Google Academic
Colombi, D., Thors, B., Tornevik, C. The impact of EMF exposure limits on output power levels of 5G devices above 6 GHz. IEEE Antennas Radio. Propagation. Letters. 141247–1249 (2015).
Laghari, M.R., Hussain, I., Ali Memon, K., Yaseen, K.G. Modeling and analysis of the effects of 5G antenna radiation on the human head by calculating the Specific Absorption Rate (SAR) using an adult brain model. J. Inf. Commun. Technol. Robot. Appl 913–18 (2018).
Google Academic
Zada, M., Ali Shah, I., Yoo, H. Integration of sub-6 GHz and mm-wave bands with large frequency ratio for future 5G MIMO applications. IEEE Access 911241–11251 (2021).
Sethi, W.T., Ashraf, M.A., Ragheb, A., Alasaad, A., Alshebeili, S.A., Demonstration of mmWave 5G Setup Employing High Gain Vivaldi Array. Int. J. Antenna Propagation 20183927153, pp. 12. https://doi.org/10.1155/2018/3927153 (2018).
Ojaloudipalchin, N. etc. MM wave phased array quasi-Yagi antenna for future 5G cellular communications. Applied Science 9(5), 9 (2019).
Google Academic
Bang, J. & Choi, J. A compact hemispherical beam coverage phased array antenna unit for 5G mm-Wave applications. IEEE Access 8139715–139726 (2020).
Kim, KW & Rahmat-Samii, Y. Terminal antennas and humans at Ka band: the importance of directional antennas. IEEE Trans. Antenna Propagation 46(6), 949-950 (1998).