Loizou, E., Karelakis, C., Galanopoulos, K. & Mattas, K. The role of agriculture as a development tool for a regional economy. Agric. Syst. 173, 482–490 (2019).
Google Scholar
Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).
Google Scholar
Kroodsma, D. A. et al. Tracking the global footprint of fisheries. Science 359, 904–908 (2018).
Google Scholar
Carpenter, S. R., Booth, E. G. & Kucharik, C. J. Extreme precipitation and phosphorus loads from two agricultural watersheds. Limnol. Oceanogr. 63, 1221–1233 (2018).
Google Scholar
Willett, W. et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).
Google Scholar
Zhang, J., Wang, S., Zhao, W., Meadows, M. E. & Fu, B. Finding pathways to synergistic development of Sustainable Development Goals in China. Humanit. Soc. Sci. Commun. 9, 21 (2022).
Google Scholar
Searchinger, T. et al. Creating a Sustainable Food Future. World Resources Report 2013–14: Interim Findings (World Resources Institute, 2020).
Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. Proc. Natl Acad. Sci. USA 109, 3232–3237 (2012).
Google Scholar
Saleem, M. Possibility of utilizing agriculture biomass as a renewable and sustainable future energy source. Heliyon 8, e08905 (2022).
Google Scholar
Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).
Google Scholar
Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).
Google Scholar
Agricultural Model Intercomparison and Improvement Project (AgMIP) https://doi.org/10.15482/USDA.ADC/1212378 (2015).
Warszawski, L. et al. The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): project framework. Proc. Natl Acad. Sci. USA 111, 3228–3232 (2014).
Google Scholar
Becker-Reshef, I., Justice, C., Whitcraft, A. K. & Jarvis, I. GEOGLAM: a GEO initiative on global agricultural monitoring. In IGARSS 2018 — 2018 IEEE International Geoscience and Remote Sensing Symposium 8155–8157 (2018).
Sellitti, S. Evaluation of CGIAR Platform for Big Data in Agriculture (CGIAR, 2021).
Yu, Q. et al. A cultivated planet in 2010 — part 2: the global gridded agricultural-production maps. Earth Syst. Sci. Data 12, 3545–3572 (2020).
Google Scholar
Fischer, G. et al. Global Agro-Ecological Zones v4 — Model Documentation (IIASA/FAO, 2021).
Portmann, F. T., Siebert, S. & Döll, P. MIRCA2000 — global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. Cycles 24, GB1011 (2010).
Weersink, A., Fraser, E., Pannell, D., Duncan, E. & Rotz, S. Opportunities and challenges for big data in agricultural and environmental analysis. Annu. Rev. Resour. Econ. 10, 19–37 (2018).
Google Scholar
Global Review of Agricultural Census Methodologies and Results (2006–2015) World Programme for the Census of Agriculture 2010 (FAO, 2021).
FAOSTAT Statistical Database (FAO, 2024); https://www.fao.org/faostat/en/#data.
Conducting Agricultural Censuses and Surveys FAO Statistical Development Series No. 6) (Food and Agriculture Organization of the United Nations, 1996); https://www.fao.org/economic/the-statistics-division-ess/world-census-of-agriculture/conducting-of-agricultural-censuses-and-surveys/en/.
Statistical Office of the European Union (EUROSTAT, 2023); https://ec.europa.eu/eurostat.
Lahti, L., Huovari, J., Kainu, M. & Biecek, P. Retrieval and analysis of Eurostat open data with the eurostat package. The R Journal 9, 385–392 (2017).
Google Scholar
World Programme For The Census Of Agriculture 2020 Vol. 1 (FAO, 2017).
Maria, D., Michele, M. & Felix, R. Development of a National and Sub-National Crop Calendars Data Set Compatible with Remote Sensing Derived Land Surface Phenology (European Union, 2018).
Fritz, S. et al. A comparison of global agricultural monitoring systems and current gaps. Agric. Syst. 168, 258–272 (2019).
Google Scholar
Sacks, W. J., Deryng, D., Foley, J. A. & Ramankutty, N. Crop planting dates: an analysis of global patterns. Glob. Ecol. Biogeogr. 19, 607–620 (2010).
Google Scholar
Becker-Reshef, I. et al. Crop type maps for operational global agricultural monitoring. Sci. Data 10, 172 (2023).
Google Scholar
Kotsuki, S. & Tanaka, K. SACRA — a method for the estimation of global high-resolution crop calendars from a satellite-sensed NDVI. Hydrol. Earth Syst. Sci. 19, 4441–4461 (2015).
Google Scholar
Laborte, A. G. et al. RiceAtlas, a spatial database of global rice calendars and production. Sci. Data 4, 170074 (2017).
Google Scholar
See, L. et al. Improved global cropland data as an essential ingredient for food security. Glob. Food Secur. 4, 37–45 (2015).
Google Scholar
Global Strategy to Improve Agricultural and Rural Statistics: Report of the Friends of the Chair on Agricultural Statistics (World Bank, 2010).
Independent External Evaluation of the United Nations Food and Agricultural Organization (Food and Agricultural Organization of the United Nations, 2005); https://www.fao.org/3/J6667E/J6667E.pdf.
Independent External Evaluation of FAO’s Role and Work in Statistics (Food and Agriculture Organization of the United Nations, 2008); https://www.fao.org/3/bd418e/bd418e.pdf.
Iizumi, T. et al. Historical changes in global yields: major cereal and legume crops from 1982 to 2006. Glob. Ecol. Biogeogr. 23, 346–357 (2014).
Google Scholar
Gangopadhyay, P. K., Shirsath, P. B., Dadhwal, V. K. & Aggarwal, P. K. A new two-decade (2001–2019) high-resolution agricultural primary productivity dataset for India. Sci. Data 9, 730 (2022).
Google Scholar
Wilkinson, M. D. et al. Comment: The FAIR Guiding Principles for scientific data management and stewardship. Sci Data 3, 160018 (2016).
Google Scholar
Leff, B., Ramankutty, N. & Foley, J. A. Geographic distribution of major crops across the world. Glob. Biogeochem. Cycles 18, GB1009 (2004).
Google Scholar
Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, GB1022 (2008).
Google Scholar
Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles 22, GB1003 (2008).
Google Scholar
Deutsch, C. A. et al. Increase in crop losses to insect pests in a warming climate. Science 361, 916–919 (2018).
Google Scholar
Lombardozzi, D. L., Bonan, G. B., Levis, S. & Lawrence, D. M. Changes in wood biomass and crop yields in response to projected CO2, O3, nitrogen deposition, and climate. J. Geophys. Res. Biogeosci. 123, 3262–3282 (2018).
Google Scholar
Rolle, M., Tamea, S. & Claps, P. Improved large-scale crop water requirement estimation through new high-resolution reanalysis dataset. In EGU General Assembly (2020).
Fischer, G. et al. Global Agro-Ecological Zones (GAEZ v3.0) (FAO/IIASA, 2012).
Bartholomé, E. & Belward, A. S. GLC2000: a new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens. 26, 1959–1977 (2005).
Google Scholar
Potapov, P. et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 3, 19–28 (2022).
Google Scholar
Klein Goldewijk, K., Beusen, A., van Drecht, G. & de Vos, M. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 20, 73–86 (2011).
Google Scholar
Kerner, H. et al. How accurate are existing land cover maps for agriculture in sub-Saharan Africa? Preprint at https://doi.org/10.48550/arXiv.2307.02575 (2023).
Meisner, J. et al. A time-series approach to mapping livestock density using household survey data. Sci. Rep. 12, 13310 (2022).
Google Scholar
Gilbert, M. et al. Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. Sci. Data 5, 180227 (2018).
Google Scholar
Gilbert, M. et al. Global Cattle Distribution in 2015 (5 Minutes of Arc) (Harvard Dataverse, accessed 11 July 2023); https://doi.org/10.7910/DVN/LHBICE.
Da Re, D. et al. Downscaling livestock census data using multivariate predictive models: sensitivity to modifiable areal unit problem. PLoS One 15, e0221070 (2020).
Google Scholar
Nicolas, G. et al. Using random forest to improve the downscaling of global livestock census data. PLoS One 11, e0150424 (2016).
Google Scholar
MacLeod, M. et al. Greenhouse Gas Emissions from Pig and Chicken Supply Chains: a Global Life Cycle Assessment (FAO, 2013).
Opio, C. et al. Greenhouse Gas Emission from Ruminant Supply Chains (FAO, 2013).
Herrero, M. et al. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl Acad. Sci. USA 110, 20888–20893 (2013).
Google Scholar
Robinson, T. P. et al. Global Livestock Production Systems (FAO and ILRI, 2011).
Kruska, R. L., Reid, R. S., Thornton, P. K., Henninger, N. & Kristjanson, P. M. Mapping livestock-oriented agricultural production systems for the developing world. Agric. Syst. 77, 39–63 (2003).
Google Scholar
Seré Rabé, C. & Steinfeld, H. World Livestock Production Systems: Current Status, Issues and Trends (FAO, 1996).
Dixon, J. A., Gibbon, D. P. & Gulliver, A. Farming Systems and Poverty: Improving Farmers’ Livelihoods in a Changing World (FAO, 2001).
Hammond, J. et al. The Rural Household Multi-Indicator Survey (RHoMIS) for rapid characterisation of households to inform climate smart agriculture interventions: description and applications in East Africa and Central America. Agric. Syst. 151, 225–233 (2017).
Google Scholar
Zane, G. & Pica-Ciamarra, U. The contribution of livestock to household livelihoods in Tanzania and Uganda: measuring tradable and non-tradable livestock outputs. Trop. Anim. Health Prod. 53, 304 (2021).
Google Scholar
Carletto, C. Better data, higher impact: improving agricultural data systems for societal change. Eur. Rev. Agric. Econ. 48, 719–740 (2021).
Google Scholar
Carletto, C., Dillon, A. & Zezza, A. in Handbook of Agricultural Economics Vol. 5 (eds Barrett, C. B. & Just, D. R.) 4407–4480 (Elsevier, 2021).
Duncan, A. J., Lukuyu, B., Mutoni, G., Lema, Z. & Fraval, S. Supporting participatory livestock feed improvement using the Feed Assessment Tool (FEAST). Agron. Sustain. Dev. 43, 34 (2023).
Google Scholar
Fritz, S. et al. A global dataset of crowdsourced land cover and land use reference data. Sci. Data 4, 170075 (2017).
Google Scholar
The State of World Fisheries and Aquaculture (SOFIA) (Food and Agriculture Organization of the United Nations, 2022); https://www.fao.org/3/cc0461en/online/sofia/2022/world-fisheries-aquaculture.html.
Food and Agriculture Organization of the United Nations. Coordinating Working Party on Fishery Statistics (CWP) Handbook (FAO, 2020).
Fishery and Aquaculture Statistics. Global Production by Production Source 1950–2020 (FishStatJ) (Food and Agricultural Organization of the United Nations, 2022); https://www.fao.org/fishery/en/topic/166235?lang=en.
Watson, R. A. A database of global marine commercial, small-scale, illegal and unreported fisheries catch 1950–2014. Sci. Data 4, 170039 (2017).
Google Scholar
Zeller, D. et al. Still catching attention: Sea Around Us reconstructed global catch data, their spatial expression and public accessibility. Mar. Policy 70, 145–152 (2016).
Google Scholar
Pauly, D., Zeller, D. & Palomares, M.L.D. (eds) Sea Around Us Concepts, Design and Data (Sea Around Us, 2020); seaaroundus.org.
Pauly, D. & Zeller, D. Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nat. Commun. 7, 10244 (2016).
Google Scholar
Fluet-Chouinard, E., Funge-Smith, S. & McIntyre, P. B. Global hidden harvest of freshwater fish revealed by household surveys. Proc. Natl Acad. Sci. 115, 7623–7628 (2018).
Google Scholar
Ye, Y. et al. FAO’s statistic data and sustainability of fisheries and aquaculture: comments on Pauly and Zeller (2017). Mar. Policy 81, 401–405 (2017).
Google Scholar
Klinger, D. H. et al. Moving beyond the fished or farmed dichotomy. Mar. Policy 38, 369–374 (2013).
Google Scholar
Froehlich, H. E. et al. Piecing together the data of the US marine aquaculture puzzle. J. Environ. Manag. 308, 114623 (2022).
Google Scholar
Clawson, G. et al. Mapping the spatial distribution of global mariculture production. Aquaculture 553, 738066 (2022).
Google Scholar
Ottinger, M., Bachofer, F., Huth, J. & Kuenzer, C. Mapping aquaculture ponds for the coastal zone of Asia with Sentinel-1 and Sentinel-2 time series. Remote Sens. 14, 153 (2021).
Google Scholar
Olofsson, P. et al. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 148, 42–57 (2014).
Google Scholar
Stehman, S. V. & Foody, G. M. Key issues in rigorous accuracy assessment of land cover products. Remote Sens. Environ. 231, 111199 (2019).
Google Scholar
Laso Bayas, J. C. et al. A global reference database of crowdsourced cropland data collected using the Geo-Wiki platform. Sci. Data 4, 170136 (2017).
Google Scholar
Gourlay, S., Kilic, T. & Lobell, D. B. A new spin on an old debate: errors in farmer-reported production and their implications for inverse scale-productivity relationship in Uganda. J. Dev. Econ. 141, 102376 (2019).
Google Scholar
Phelps, L. N. & Kaplan, J. O. Land use for animal production in global change studies: defining and characterizing a framework. Glob. Chang. Biol. 23, 4457–4471 (2017).
Google Scholar
Lowder, S. K., Sánchez, M. V. & Bertini, R. Which farms feed the world and has farmland become more concentrated? World Dev. 142, 105455 (2021).
Google Scholar
van Andel, M., Tildesley, M. J. & Gates, M. C. Challenges and opportunities for using national animal datasets to support foot‐and‐mouth disease control. Transbound. Emerg. Dis. 68, 1800–1813 (2021).
Google Scholar
Abebe, R. et al. Narratives and counternarratives on data sharing in Africa. In Proc. 2021 ACM Conference on Fairness, Accountability, and Transparency 329–341 (2021).
Bradley, D. et al. Opportunities to improve fisheries management through innovative technology and advanced data systems. Fish Fish. 20, 564–583 (2019).
Google Scholar
van Helmond, A. T. M. et al. Electronic monitoring in fisheries: lessons from global experiences and future opportunities. Fish Fish. 21, 162–189 (2020).
Google Scholar
Seto, K. L. et al. Fishing through the cracks: the unregulated nature of global squid fisheries. Sci. Adv. 9, eadd8125 (2023).
Google Scholar
Taconet, M. et al. Global Atlas of AIS-Based Fishing Activity: Challenges and Opportunities (FAO, 2019).
Welch, H. et al. Hot spots of unseen fishing vessels. Sci. Adv. 8, eabq2109 (2023).
Google Scholar
Orofino, S., McDonald, G., Mayorga, J., Costello, C. & Bradley, D. Opportunities and challenges for improving fisheries management through greater transparency in vessel tracking. ICES J. Mar. Sci. 80, 675–689 (2023).
Google Scholar
Shepperson, J. L. et al. A comparison of VMS and AIS data: the effect of data coverage and vessel position recording frequency on estimates of fishing footprints. ICES J. Mar. Sci. 75, 988–998 (2018).
Google Scholar
Kroodsma, D. A. et al. Revealing the Global Longline Fleet with Satellite Radar (2022).
Park, J. et al. Illuminating dark fishing fleets in North Korea. Sci. Adv. 6, eabb1197 (2023).
Google Scholar
Ottinger, M., Clauss, K. & Kuenzer, C. Large-scale assessment of coastal aquaculture ponds with Sentinel-1 time series data. Remote Sens. 9, 440 (2017).
Google Scholar
Piñeiro, V. et al. A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes. Nat. Sustain. 3, 809–820 (2020).
Google Scholar
Rotz, S. et al. The politics of digital agricultural technologies: a preliminary review. Sociol. Ruralis 59, 203–229 (2019).
Google Scholar
Xu, Y. et al. Mapping aquaculture areas with multi-source spectral and texture features: a case study in the Pearl River basin (Guangdong), China. Remote Sens. 13, 4320 (2021).
Google Scholar
Cochrane, K. (ed.) Illuminating Hidden Harvests: the Contributions of Small-Scale Fisheries to Sustainable Development (FAO, Duke Univ. & World Fish, 2023).
Halim, A. et al. Developing a functional definition of small-scale fisheries in support of marine capture fisheries management in Indonesia. Marine Policy 100, 238–248 (2018).
Google Scholar
Smith, H. & Basurto, X. Defining small-scale fisheries and examining the role of science in shaping perceptions of who and what counts: a systematic review. Front. Mar. Sci. 6, 236 (2019).
Google Scholar
Carletto, C., Jolliffe, D. & Banerjee, R. From tragedy to renaissance: improving agricultural data for better policies. J. Dev. Stud. 51, 133–148 (2015).
Google Scholar
Agarwal, S., Singh, V. & Gandhi, R. Could a data sharing protocol be agriculture’s missing link? The Chicago Council on Global Affairs https://globalaffairs.org/commentary-and-analysis/blogs/could-data-sharing-protocol-be-agricultures-missing-link (2021).
Fisher, A. & Fukuda-Parr, S. Introduction — data, knowledge, politics and localizing the SDGs. J. Hum. Dev. Capab. 20, 375–385 (2019).
Google Scholar
Montenegro de Wit, M. & Canfield, M. Feeding the world, byte by byte’: emergent imaginaries of data productivism. J. of Peasant Stud. https://doi.org/10.1080/03066150.2023.2232997 (2023).
Wolfert, S., Ge, L., Verdouw, C. & Bogaardt, M.-J. Big data in smart farming — a review. Agric. Syst. 153, 69–80 (2017).
Google Scholar
Spanaki, K., Karafili, E. & Despoudi, S. AI applications of data sharing in agriculture 4.0: a framework for role-based data access control. Int. J. Inf. Manag. 59, 102350 (2021).
Google Scholar
Brinkerhoff, D. W. & Brinkerhoff, J. M. Public–private partnerships: perspectives on purposes, publicness, and good governance. Public Adm. Dev. 31, 2–14 (2011).
Google Scholar
Wiggins, S., Kirsten, J. & Llambí, L. The future of small farms. World Dev. 38, 1341–1348 (2010).
Google Scholar
Jouanjean, M.-A., Casalini, F., Wiseman, L. & Gray, E. Issues Around Data Governance in the Digital Transformation of Agriculture: The Farmers’ Perspective (OECD, 2020).
Jensen, Ø., Dempster, T., Thorstad, E. B., Uglem, I. & Fredheim, A. Escapes of fishes from Norwegian sea-cage aquaculture: causes, consequences and prevention. Aquacult. Environ. Interact. 1, 71–83 (2010).
Pinsky, M. L. et al. Preparing ocean governance for species on the move. Science 360, 1189–1191 (2018).
Google Scholar
Herrero, M. et al. Innovation can accelerate the transition towards a sustainable food system. Nat. Food 1, 266–272 (2020).
Google Scholar
Barrett, C. B. et al. Bundling innovations to transform agri-food systems. Nat. Sustain. 3, 974–976 (2020).
Google Scholar
Paliyam, M., Nakalembe, C., Liu, K., Nyiawung, R. & Kerner, H. Street2sat: a machine learning pipeline for generating ground-truth geo-referenced labeled datasets from street-level images. In ICML 2021 Workshop on Tackling Climate Change with Machine Learning (ICML, 2021).
Yan, Y. & Ryu, Y. Exploring Google Street View with deep learning for crop type mapping. ISPRS J. Photogramm. Remote Sens. 171, 278–296 (2021).
Google Scholar
d’Andrimont, R., Yordanov, M., Martinez-Sanchez, L. & Van der Velde, M. Monitoring crop phenology with street-level imagery using computer vision. Comput. Electron. Agric. 196, 106866 (2022).
Google Scholar
van der Merwe, D., Burchfield, D. R., Witt, T. D., Price, K. P. & Sharda, A. Drones in agriculture. Adv. Agron. 162, 1–30 (2020).
Google Scholar
d’Andrimont, R. et al. Crowdsourced street-level imagery as a potential source of in-situ data for crop monitoring. Land 7, 127 (2018).
Google Scholar
Kerner, H. R. et al. Phenological normalization can improve in-season classification of maize and soybean: a case study in the central US Corn Belt. Sci. Remote Sens. 6, 100059 (2022).
Google Scholar
Wang, S. et al. Mapping crop types in southeast India with smartphone crowdsourcing and deep learning. Remote Sens. 12, 2957 (2020).
Google Scholar
Tseng, G., Kerner, H., Nakalembe, C. & Becker-Reshef, I. Learning to predict crop type from heterogeneous sparse labels using meta-learning. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 1111–1120 (2021).
Muruganantham, P., Wibowo, S., Grandhi, S., Samrat, N. H. & Islam, N. A systematic literature review on crop yield prediction with deep learning and remote sensing. Remote Sens. 14, 1990 (2022).
Google Scholar
Deines, J. M., Wang, S. & Lobell, D. B. Satellites reveal a small positive yield effect from conservation tillage across the US Corn Belt. Environ. Res. Lett. 14, 124038 (2019).
Google Scholar
Ferrag, M. A., Shu, L., Yang, X., Derhab, A. & Maglaras, L. Security and privacy for green IoT-based agriculture: review, blockchain solutions, and challenges. IEEE Access 8, 32031–32053 (2020).
Google Scholar
Rahman, M. U., Baiardi, F. & Ricci, L. Blockchain smart contract for scalable data sharing in IoT: a case study of smart agriculture. In 2020 IEEE Global Conference on Artificial Intelligence and Internet of Things (GCAIoT) 1–7 (IEEE, 2020).
Gobezie, T. B. & Biswas, A. Break barriers in soil data stewardship by rewarding data generators. Nat. Rev. Earth Environ. 4, 353–354 (2023).
Google Scholar
Durrant, A. et al. The role of cross-silo federated learning in facilitating data sharing in the agri-food sector. Comput. Electron. Agric. 193, 106648 (2022).
Google Scholar
UNSC. Spatial anonymization: guidance note for the Inter-Secretariat Working Group on Household Surveys. https://unstats.un.org/unsd/statcom/52nd-session/documents/BG-3l-Spatial_Anonymization-E.pdf (2021).
Tedeschi, L. O. et al. Quantification of methane emitted by ruminants: a review of methods. J. Anim. Sci. 100, skac197 (2022).
Google Scholar
Ramayo-Caldas, Y. et al. Identification of rumen microbial biomarkers linked to methane emission in Holstein dairy cows. J. Anim. Breed. Genet. 137, 49–59 (2020).
Google Scholar
Han, C. S. et al. Invited review: Sensor technologies for real-time monitoring of the rumen environment. J. Dairy Sci. 105, 6379–6404 (2022).
Tullo, E., Finzi, A. & Guarino, M. Review: Environmental impact of livestock farming and precision livestock farming as a mitigation strategy. Sci. Total Environ. 650, 2751–2760 (2019).
Google Scholar
Chase, L. E. & Fortina, R. Environmental and economic responses to precision feed management in dairy cattle diets. Agriculture https://doi.org/10.3390/agriculture13051032 (2023).
Mackenzie, S. in Smart Livestock Nutrition 311–336 (Springer, 2023).
Sala, E. et al. The economics of fishing the high seas. Sci. Adv. 4, eaat2504 (2023).
Google Scholar
White, T. D. et al. Predicted hotspots of overlap between highly migratory fishes and industrial fishing fleets in the northeast Pacific. Sci. Adv. 5, eaau3761 (2023).
Google Scholar
Queiroz, N. et al. Global spatial risk assessment of sharks under the footprint of fisheries. Nature 572, 461–466 (2019).
Google Scholar
White, T. D. et al. Assessing the effectiveness of a large marine protected area for reef shark conservation. Biol. Conserv. 207, 64–71 (2017).
Google Scholar
McDermott, G. R., Meng, K. C., McDonald, G. G. & Costello, C. J. The blue paradox: preemptive overfishing in marine reserves. Proc. Natl Acad. Sci. 116, 5319–5325 (2019).
Google Scholar
Cabral, R. B. et al. Rapid and lasting gains from solving illegal fishing. Nat. Ecol. Evol. 2, 650–658 (2018).
Google Scholar
Behivoke, F. et al. Estimating fishing effort in small-scale fisheries using GPS tracking data and random forests. Ecol. Indic. 123, 107321 (2021).
Google Scholar
Tilley, A., Dos Reis Lopes, J. & Wilkinson, S. P. PeskAAS: a near-real-time, open-source monitoring and analytics system for small-scale fisheries. PLoS One 15, e0234760 (2020).
Google Scholar
Snapir, B., Waine, T. W. & Biermann, L. Maritime vessel classification to monitor fisheries with SAR: demonstration in the North Sea. Remote Sens. 11, 353 (2019).
Google Scholar
Sarda, K., CaJacob, D., Orr, N. & Zee, R. Making the invisible visible: precision RF-emitter geolocation from space by the Hawkeye 360 Pathfinder mission. In 32nd Annual AIAA/USU Conference on Small Satellites (AIAA, USU, 2018).
Iacarella, J. C. et al. Application of AIS- and flyover-based methods to monitor illegal and legal fishing in Canada’s Pacific marine conservation areas. Conserv. Sci. Pract. 5, e12926 (2023).
Google Scholar
Prayudi, A., Sulistijono, I. A., Risnumawan, A. & Darojah, Z. Surveillance system for illegal fishing prevention on UAV imagery using computer vision. In 2020 International Electronics Symposium (IES) 385–391 (2020).
Bartholomew, D. C. et al. Remote electronic monitoring as a potential alternative to on-board observers in small-scale fisheries. Biol. Conserv. 219, 35–45 (2018).
Google Scholar
Antonucci, F. & Costa, C. Precision aquaculture: a short review on engineering innovations. Aquacult. Int. 28, 41–57 (2020).
Google Scholar
Rastegari, H. et al. Internet of Things in aquaculture: a review of the challenges and potential solutions based on current and future trends. Smart Agric. Technol. 4, 100187 (2023).
Google Scholar
Cervantes-Godoy, D. et al. The Future of Food and Agriculture: Trends and Challenges Vol. 4 (FAO, 2014).
Turnheim, B. et al. Evaluating sustainability transitions pathways: bridging analytical approaches to address governance challenges. Glob. Environ. Chang. 35, 239–253 (2015).
Google Scholar
Dawes, S. S. Stewardship and usefulness: policy principles for information-based transparency. Gov. Inf. Q. 27, 377–383 (2010).
Google Scholar
Xie, W. et al. Crop switching can enhance environmental sustainability and farmer incomes in China. Nature https://doi.org/10.1038/s41586-023-05799-x (2023).
Kochupillai, M., Kahl, M., Schmitt, M., Taubenböck, H. & Zhu, X. X. Earth observation and artificial intelligence: understanding emerging ethical issues and opportunities. IEEE Geosci. Remote Sens. Mag. 10, 90–124 (2022).
Google Scholar
World Bank. World Development Report 2021: Data for Better Lives (World Bank, 2021).
Sachs, J. D. et al. Six transformations to achieve the sustainable development goals. Nat. Sustain. 2, 805–814 (2019).
Fanzo, J. et al. Viewpoint: Rigorous monitoring is necessary to guide food system transformation in the countdown to the 2030 global goals. Food Policy 104, 102163 (2021).
Google Scholar
Cassidy, E. S., West, P. C., Gerber, J. S. & Foley, J. A. Redefining agricultural yields: from tonnes to people nourished per hectare. Environ. Res. Lett. 8, 034015 (2013).
Google Scholar
Iizumi, T. & Sakai, T. The global dataset of historical yields for major crops 1981–2016. Sci. Data 7, 97 (2020).
Google Scholar
Franke, J. A. et al. The GGCMI phase 2 experiment: global gridded crop model simulations under uniform changes in CO2, temperature, water, and nitrogen levels. Geosci. Model Dev. 13, 2315–2336 (2020).
Google Scholar
Jägermeyr, J. et al. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nat. Food 2, 873–885 (2021).
Google Scholar
Müller, C. et al. The Global Gridded Crop Model Intercomparison phase 1 simulation dataset. Sci. Data 6, 50 (2019).
Google Scholar
The Global Yield Gap and Water Productivity Atlas (GYGA) (Yield Gap, 2022); http://www.yieldgap.org.
Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).
Google Scholar
Jackson, N. D., Konar, M., Debaere, P. & Estes, L. Probabilistic global maps of crop-specific areas from 1961 to 2014. Environ. Res. Lett. 14, 094023 (2019).
Google Scholar
Ray, D. K. et al. Climate change has likely already affected global food production. PLoS One 14, e0217148 (2019).
Google Scholar
International Food Policy Research Institute. Global spatially-disaggregated crop production statistics data for 2000 version 3.0.7. https://doi.org/10.7910/DVN/A50I2T (2019).
International Food Policy Research Institute (IFPRI), International Institute for Applied Systems Analysis (IIASA). Global Spatially-disaggregated crop production statistics data for 2005 version 3.2. https://doi.org/10.7910/DVN/DHXBJX (2016).
International Food Policy Research Institute. Global spatially-disaggregated crop production statistics data for 2010 version 2.0. https://doi.org/10.7910/DVN/PRFF8V (2019).
West, P. C. et al. Leverage points for improving global food security and the environment. Science 345, 325–328 (2014).