Nahavandi, S. Industry 5.0—A human-centric solution. Sustainability 11 (2019).
Li, S., Ni, Q., Sun, Y., Min, G. & Al-Rubaye, S. Energy-efficient resource allocation for industrial cyber-physical IoT systems in 5G era. IEEE Trans. Ind. Inform. 14, 2618–2628. https://doi.org/10.1109/TII.2018.2799177 (2018).
Google Scholar
Wang, S. et al. Explainable AI for B5G/6G: Technical aspects, use cases, and research challenges. arXiv:2112.04698 (2021).
Maddikunta, P. K. R. et al. Industry 5.0: A survey on enabling technologies and potential applications. J. Ind. Inf. Integr. 26, 100257. https://doi.org/10.1016/j.jii.2021.100257 (2022).
Google Scholar
Guo, F. et al. Enabling massive IoT toward 6G: A comprehensive survey. IEEE Internet Things J.https://doi.org/10.1109/JIOT.2021.3063686 (2021).
Taneja, A., Rani, S., Garg, S., Hassan, M. M. & AlQahtani, S. A. Energy aware resource control mechanism for improved performance in future green 6G networks. Comput. Netw. 217, 109333. https://doi.org/10.1016/j.comnet.2022.109333 (2022).
Google Scholar
Saluja, D., Singh, R., Saluja, N. & Kumar, S. Connectivity improvement of hybrid millimeter wave and microwave vehicular networks. IEEE Trans. Intell. Transp. Syst.https://doi.org/10.1109/TITS.2022.3221337 (2022).
Saluja, D., Singh, R., Saluja, N. & Kumar, S. Energy-efficient strategy for improving coverage and rate using hybrid vehicular networks. IEEE Trans. Intell. Transp. Syst. 23, 430–443. https://doi.org/10.1109/TITS.2020.3011890 (2022).
Google Scholar
Tariq, F. et al. A speculative study on 6G. IEEE Wirel. Commun. 27, 118–125. https://doi.org/10.1109/MWC.001.1900488 (2020).
Google Scholar
Guan, X., Wu, Q. & Zhang, R. Intelligent reflecting surface assisted secrecy communication: Is artificial noise helpful or not?. IEEE Wirel. Commun. Lett. 9, 778–782. https://doi.org/10.1109/LWC.2020.2969629 (2020).
Google Scholar
Yu, X., Xu, D., Sun, Y., Ng, D. W. K. & Schober, R. Robust and secure wireless communications via intelligent reflecting surfaces. IEEE J. Sel. Areas Commun. 38, 2637–2652. https://doi.org/10.1109/JSAC.2020.3007043 (2020).
Google Scholar
Song, Y., Khandaker, M. R. A., Tariq, F., Wong, K.-K. & Toding, A. Truly intelligent reflecting surface-aided secure communication using deep learning. In 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring) 1–6 https://doi.org/10.1109/VTC2021-Spring51267.2021.9448826 (2021).
Xu, S., Liu, J. & Cao, Y. Intelligent reflecting surface empowered physical layer security: Signal cancellation or jamming? IEEE Internet Things J.https://doi.org/10.1109/JIOT.2021.3079325 (2021).
Wu, Q. & Zhang, R. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network. IEEE Commun. Mag. 58, 106–112. https://doi.org/10.1109/MCOM.001.1900107 (2020).
Google Scholar
Gong, S. et al. Toward smart wireless communications via intelligent reflecting surfaces: A contemporary survey. IEEE Commun. Surv. Tutor. 22, 2283–2314. https://doi.org/10.1109/COMST.2020.3004197 (2020).
Google Scholar
Zhang, S., Wu, Q., Xu, S. & Li, G. Y. Fundamental green tradeoffs: Progresses, challenges, and impacts on 5G networks. IEEE Commun. Surv. Tutor. 19, 33–56. https://doi.org/10.1109/COMST.2016.2594120 (2017).
Google Scholar
Zheng, J., Zhang, J., Zhang, L., Zhang, X. & Ai, B. Efficient receiver design for uplink cell-free massive MIMO with hardware impairments. IEEE Trans. Veh. Technol. 69, 4537–4541. https://doi.org/10.1109/TVT.2020.2975354 (2020).
Google Scholar
Taneja, A., Rani, S., Alhudhaif, A., Koundal, D. & Gündüz E. S. An optimized scheme for energy efficient wireless communication via intelligent reflecting surfaces. Expert Syst. Appl. 190, 116106. https://doi.org/10.1016/j.eswa.2021.116106 (2022).
Tan, X., Sun, Z., Jornet, J. M. & Pados, D. Increasing indoor spectrum sharing capacity using smart reflect-array. In Proceedings of the IEEE International Conference on Communications (ICC) 1–6 https://doi.org/10.1109/ICC.2016.7510962 (Kuala Lumpur, Malaysia, 2016).
Huang, C., Zappone, A., Debbah, M. & Yuen, C. Achievable rate maximization by passive intelligent mirrors. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 3714–3718 (Calgary, Canada, 2018).
Huang, C., Alexandropoulos, G. C., Zappone, A., Debbah, M. & Yuen, C. Energy efficient multi-user miso communication using low resolution large intelligent surfaces. In Proceedings of the IEEE Globecom Workshops (GC Wkshps) 1–6 (Abu Dhabi, UAE, 2018).
Huang, C., Zappone, A., Alexandropoulos, G. C., Debbah, M. & Yuen, C. Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Trans. Wirel. Commun. 18, 4157–4170. https://doi.org/10.1109/TWC.2019.2922609 (2019).
Google Scholar
Basar, E. Transmission through large intelligent surfaces: A new frontier in wireless communications. In Proceedings of the European Conference on Networks and Communications (EuCNC) 112–117 (Valencia, Spain, 2019).
Zhou, G., Pan, C., Ren, H., Wang, K. & Nallanathan, A. A framework of robust transmission design for IRS-aided MISO communications with imperfect cascaded channels. IEEE Trans. Signal Process. 68, 5092–5106. https://doi.org/10.1109/TSP.2020.3019666 (2020).
Google Scholar
Wu, Q. & Zhang, R. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming. IEEE Trans. Wirel. Commun. 18, 5394–5409. https://doi.org/10.1109/TWC.2019.2936025 (2019).
Google Scholar
Wu, Q. & Zhang, R. Intelligent reflecting surface enhanced wireless network: Joint active and passive beamforming design. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), 1–6 (Abu Dhabi, UAE, 2018).
Wu, Q. & Zhang, R. Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts. IEEE Trans. Commun. 68, 1838–1851. https://doi.org/10.1109/TCOMM.2019.2958916 (2020).
Google Scholar
Zhao, M.-M., Wu, Q., Zhao, M.-J. & Zhang, R. Intelligent reflecting surface enhanced wireless networks: Two-timescale beamforming optimization. IEEE Trans. Wirel. Commun. 20, 2–17. https://doi.org/10.1109/TWC.2020.3022297 (2021).
Google Scholar
Zhao, M.-M., Liu, A. & Zhang, R. Outage-constrained robust beamforming for intelligent reflecting surface aided wireless communication. IEEE Trans. Signal Process. 69, 1301–1316. https://doi.org/10.1109/TSP.2021.3056899 (2021).
Google Scholar
Gong, S., Yang, Z., Xing, C., An, J. & Hanzo, L. Beamforming optimization for intelligent reflecting surface-aided SWIPT IoT networks relying on discrete phase shifts. IEEE Internet Things J. 8, 8585–8602. https://doi.org/10.1109/JIOT.2020.3046929 (2021).
Google Scholar
Shen, H., Xu, W., Gong, S., Zhao, C. & Ng, D. W. K. Beamforming optimization for IRS-aided communications with transceiver hardware impairments. IEEE Trans. Commun. 69, 1214–1227. https://doi.org/10.1109/TCOMM.2020.3033575 (2021).
Google Scholar
Wu, Q. & Zhang, R. Beamforming optimization for intelligent reflecting surface with discrete phase shifts. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 7830–7833 (Brighton, UK, 2019).
Xie, H., Xu, J. & Liu, Y. Max–min fairness in IRS-aided multi-cell MISO systems via joint transmit and reflective beamforming. In Proceedings of the IEEE International Conference on Communications (ICC) 1–6 (Brighton, UK, 2020).
Taha, A., Alrabeiah, M. & Alkhateeb, A. Deep learning for large intelligent surfaces in millimeter wave and massive MIMO systems. In Proceedings of the IEEE Global Communications Conference (GLOBECOM) 1–6 (Waikoloa, USA, 2019).
Yu, X., Xu, D. & Schober, R. Enabling secure wireless communications via intelligent reflecting surfaces. In Proceedings of the IEEE Global Communications Conference (GLOBECOM) 1–6 (Waikoloa, USA, 2019).
Gao, Y., Xu, J., Xu, W., Ng, D. W. K. & Alouini, M. S. Distributed IRS with statistical passive beamforming for MISO communications. IEEE Wirel. Commun. Lett. 10, 221–225. https://doi.org/10.1109/LWC.2020.3024952 (2021).
Google Scholar
You, C., Zheng, B. & Zhang, R. Fast beam training for IRS-assisted multiuser communications. IEEE Wirel. Commun. Lett. 9, 1845–1849. https://doi.org/10.1109/LWC.2020.3005980 (2020).
Google Scholar
Ding, Z. & Vincent Poor, H. A simple design of IRS-NOMA transmission. IEEE Commun. Lett. 24, 1119–1123. https://doi.org/10.1109/LCOMM.2020.2974196 (2020).
Song, D., Shin, W. & Lee, J. A maximum throughput design for wireless powered communications networks with IRS-NOMA. IEEE Wirel. Commun. Lett.https://doi.org/10.1109/LWC.2020.3046722 (2020).
Jiao, S., Fang, F., Zhou, X. & Zhang, H. Joint beamforming and phase shift design in downlink UAV networks with IRS-assisted NOMA. J. Commun. Inf. Netw. 5, 138–149. https://doi.org/10.23919/JCIN.2020.9130430 (2020).
Wang, H., Liu, C., Shi, Z., Fu, Y. & Song, R. On power minimization for IRS-aided downlink NOMA systems. IEEE Wirel. Commun. Lett. 9, 1808–1811. https://doi.org/10.1109/LWC.2020.2999097 (2020).
Google Scholar
Liu, R., Li, H., Li, M. & Liu, Q. Symbol-level precoding design for IRS-assisted mu-miso systems. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC) 1–6 (Xi’an, China, 2020).
Zheng, B., You, C. & Zhang, R. Fast channel estimation for IRS-assisted OFDM. IEEE Wirel. Commun. Lett.https://doi.org/10.1109/LWC.2020.3038434 (2020).
Ferdouse, L., Woungang, I., Anpalagan, A. & Yamamoto, K. A resource allocation policy for downlink communication in distributed IRS aided multiple-input single-output systems. IEEE Trans. Commun. 71, 2410–2424. https://doi.org/10.1109/TCOMM.2023.3242352 (2023).
Google Scholar
Shaikh, M. H. N., Bohara, V. A. & Srivastava, A. IRS-aided communication system with phase noise and hardware impairments: Performance analysis and characterization. In 2023 15th International Conference on COMmunication Systems and NETworkS (COMSNETS) 392–396. https://doi.org/10.1109/COMSNETS56262.2023.10041338 (2023).
Kumar, C. & Kashyap, S. On the power transfer efficiency and feasibility of wireless energy transfer using double IRS. IEEE Trans. Veh. Technol. 72, 6165–6180. https://doi.org/10.1109/TVT.2022.3231636 (2023).
Google Scholar
Song, H., Wen, H., Tang, J., Ho, P.-H. & Zhao, R. Secrecy energy efficiency maximization for distributed intelligent-reflecting-surface-assisted miso secure communications. IEEE Internet Things J. 10, 4462–4474. https://doi.org/10.1109/JIOT.2022.3218664 (2023).
Google Scholar
Li, Y., Zhang, H., Long, K. & Nallanathan, A. Exploring sum rate maximization in UAV-based multi-IRS networks: IRS association, UAV altitude, and phase shift design. IEEE Trans. Commun. 70, 7764–7774. https://doi.org/10.1109/TCOMM.2022.3206884 (2022).
Google Scholar