Henden, A. A. & Kaitchuck, R. H. Astronomical Photometry (Van Nostrand Reinhold, 1982).
Abdel Rahman, H. I. & Darwish, M. Physical characterization of late-type contact binary systems observed by LAMOST: A comprehensive statistical analysis. Sci. Rep. 13, 21648. https://doi.org/10.1038/s41598-023-48507-5 (2023).
Google Scholar
Samus’, N., Kazarovets, E., Durlevich, O., Kireeva, N. & Pastukhova, E. General catalogue of variable stars: Version GCVS 5.1. Astron. Rep. 61, 80–88 (2017).
Google Scholar
Qian, S.-B. et al. Physical properties and catalog of EW-type eclipsing binaries observed by LAMOST. Res. Astron. Astrophys. 17, 087 (2017).
Google Scholar
Lohr, M. E. et al. Period and period change measurements for 143 SuperWASP eclipsing binary candidates near the short-period limit and discovery of a doubly eclipsing quadruple system. AAp 549, A86. https://doi.org/10.1051/0004-6361/201220562 (2013).
Google Scholar
Lohr, M. E., Norton, A. J., Payne, S. G., West, R. G. & Wheatley, P. J. Orbital period changes and the higher-order multiplicity fraction amongst SuperWASP eclipsing binaries. AAP 578, A136. https://doi.org/10.1051/0004-6361/201525747 (2015).
Google Scholar
Bellm, E. C. et al. The Zwicky transient facility: System overview, performance, and first results. Publ. Astron. Soc. Pac. 131, 018002 (2018).
Google Scholar
Collaboration, G. et al. Gaia data release 3: Stellar multiplicity, a teaser for the hidden treasure. Astron. Astrophys. (2022).
Poro, A. et al. Investigation of the orbital period and mass relations for W UMa-type contact systems. Mon. Not. R. Astron. Soc. 510, 5315–5329 (2022).
Google Scholar
Zhang, X.-D. & Qian, S.-B. Orbital period cut-off of W UMa-type contact binaries. Mon. Not. R. Astron. Soc. 497, 3493–3503. https://doi.org/10.1093/mnras/staa2166 (2020).
Google Scholar
Shokry, A. et al. New CCD photometry and light curve analysis of two WUMaBinaries: 1SWASP J133417.80+394314.4 and V2790 Orion. New Astron. 80, 101400. https://doi.org/10.1016/j.newast.2020.101400 (2020).
Google Scholar
Shokry, A. et al. Photometric study of two eclipsing binary stars: Light curve analysis and system parameters for GU CMa and SWASP J011732.10+525204.9. New Astron. 59, 8–13. https://doi.org/10.1016/j.newast.2017.08.005 (2018).
Google Scholar
Kouzuma, S. Mass-transfer properties of overcontact systems in the Kepler eclipsing binary catalog. Publ. Astron. Soc. Jpn. 70, 90. https://doi.org/10.1093/pasj/psy086 (2018).
Google Scholar
Darwish, M. S. et al. Orbital solution and evolutionary state for the eclipsing binary 1SWASP J080150.03+471433.8. New Astron. 50, 37–42. https://doi.org/10.1016/j.newast.2016.07.007 (2017).
Google Scholar
Darwish, M. S. et al. New CCD photometry of the eclipsing binary system V1067 Her. New Astron. 50, 12–18. https://doi.org/10.1016/j.newast.2016.06.005 (2017).
Google Scholar
Darwish, M. S. et al. Kottamia 74-inch telescope discovery of the new eclipsing binary 2MASS J20004638 + 0547475.: First CCD photometry and light curve analysis. New Astron. 53, 35–38. https://doi.org/10.1016/j.newast.2016.11.009 (2017).
Google Scholar
Shokry, A., Darwish, M. S., Saad, S. M., Eldepsy, M. & Zead, I. Kottamia 74-inch telescope discovery of the new eclipsing binary KAO-EGYPT J225702.44+523222.1.: First CCD photometry and light curve analysis. New Astron. 55, 27–31. https://doi.org/10.1016/j.newast.2017.03.004 (2017).
Google Scholar
Saad, M. S. et al. The first CCD photometric analysis and modeling for short period eclipsing binary system 1SWASPJ210423.7+073140.4. New Astron. 47, 24–28. https://doi.org/10.1016/j.newast.2016.02.001 (2016).
Google Scholar
Rucinski, S. M. The short-period end of the contact binary period distribution based on the all-sky automated survey. Mon. Not. R. Astron. Soc. 382, 393–396 (2007).
Google Scholar
Rucinski, S. Can full convection explain the observed short-period limit of the W UMa-type binaries?. Astron. J. 103, 960–966 (1992).
Google Scholar
Stepien, K. The low-mass limit for total mass of W UMa-type binaries. Acta Astronautica 56, 347–364. https://doi.org/10.48550/arXiv.astro-ph/0701529 (2006)
Google Scholar
Paxton, B. et al. Modules for experiments in stellar astrophysics (MESA). Astrophys. J. Suppl. Ser. 192, 3. https://doi.org/10.1088/0067-0049/192/1/3 (2011).
Google Scholar
Paxton, B. et al. Modules for experiments in stellar astrophysics (MESA): Planets, oscillations, rotation, and massive stars. Astrophys. J. Suppl. Ser. 208, 4. https://doi.org/10.1088/0067-0049/208/1/4 (2013).
Google Scholar
Paxton, B. et al. Modules for experiments in stellar astrophysics (MESA): Binaries, pulsations, and explosions. Astrophys. J. Suppl. Ser. 220, 15. https://doi.org/10.1088/0067-0049/220/1/15 (2015).
Google Scholar
Choi, J. et al. Mesa isochrones and stellar tracks (MIST). I. Solar-scaled models. Astrophys. J. 823, 102. https://doi.org/10.3847/0004-637X/823/2/102 (2016).
Google Scholar
Dotter, A. MESA isochrones and stellar tracks (MIST) 0: Methods for the construction of stellar isochrones. Astrophys. J. Suppl. Ser. 222, 8. https://doi.org/10.3847/0067-0049/222/1/8 (2016).
Google Scholar
Masci, F. J. et al. The Zwicky transient facility: Data processing, products, and archive. Publ. Astron. Soc. Pac. 131, 018003 (2018).
Google Scholar
Chen, X. et al. The Zwicky transient facility catalog of periodic variable stars. Astrophys. J. Suppl. Ser. 249, 18 (2020).
Google Scholar
Lomb, N. R. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39, 447–462 (1976).
Google Scholar
Scargle, J. D. Studies in astronomical time series analysis. II-statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. Part 1(263), 835–853 (1982).
Google Scholar
Kwee, K. K. & van Woerden, H. A method for computing accurately the epoch of minimum of an eclipsing variable. Bull. Astron. Inst. Neth. 12, 327 (1956).
Google Scholar
Prša, A. & Zwitter, T. A computational guide to physics of eclipsing binaries. I. Demonstrations and perspectives. Astrophys. J. 628, 426–438. https://doi.org/10.1086/430591 (2005).
Google Scholar
Allen, C. W. & Cox, A. N. Allen’s Astrophysical Quantities (Springer Science & Business Media, 2000).
Lucy, L. B. A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 1013–1024 (1977).
Google Scholar
Rucinski, S. The proximity effects in close binary systems. II. The bolometric reflection effect for stars with deep convective envelopes. Acta Astronomica 19, 245 (1969).
Google Scholar
Van Hamme, W. New limb-darkening coefficients for modeling binary star light curves. Astron. J. 106, 2096–2117 (1993).
Google Scholar
Terrell, D. & Wilson, R. Photometric mass ratios of eclipsing binary stars. Zdeněk Kopal’s Binary Star Legacy 221–230 (2005).
Binnendijk, L. The orbital elements of W Ursae Majoris systems. Vistas Astron. 12, 217–256 (1970).
Google Scholar
Rucinski, S. The W UMa-type systems as contact binaries. I. Two methods of geometrical elements determination. Degree of contact. Acta Astronomica 23, 79 (1973).
Google Scholar
Kallrath, J., Milone, E. F. & Wilson, R. Eclipsing Binary Stars: Modeling and Analysis Vol. 11 (Springer, 2009).
Google Scholar
Maceroni, C., Milano, L. & Russo, G. General properties of W Ursae Majoris systems. Mon. Not. R. Astron. Soc. 217, 843–866 (1985).
Google Scholar
Csizmadia, S. & Klagyivik, P. On the properties of contact binary stars. Astron. Astrophys. 426, 1001–1005 (2004).
Google Scholar
O’Connell, D. J. K. The so-called periastron effect in close eclipsing binaries; New variable stars (fifth list). Publ. Riverv. Coll. Observ. 2, 85–100 (1951).
Google Scholar
Lee, J. W. et al. Long-term photometric behavior of the eclipsing binary GW Cephei. Astron. J. 139, 898 (2010).
Google Scholar
Xiang, F.-Y., Yu, Y.-X. & Xiao, T.-Y. CCD photometric study and period investigation of V508 Oph. Astron. J. 149, 62 (2015).
Google Scholar
Kouzuma, S. Starspots in contact and semi-detached binary systems. Publ. Astron. Soc. Jpn. 71, 21 (2019).
Google Scholar
Pothuneni, R. R., Devarapalli, S. P. & Jagirdar, R. The first photometric and spectroscopic study of contact binary V2840 Cygni. Res. Astron. Astrophys. 23, 025017 (2023).
Google Scholar
Latković, O., Čeki, A. & Lazarević, S. Statistics of 700 individually studied W UMa stars. Astrophys. J. Suppl. Ser. 254, 10 (2021).
Google Scholar
Lucy, L. B. & Wilson, R. E. Observational tests of theories of contact binaries. Astrophys. J. 231, 502–513. https://doi.org/10.1086/157212 (1979).
Google Scholar
Bradstreet, D. & Steelman, D. Binary maker 3.0-an interactive graphics-based light curve synthesis program written in java. In American Astronomical Society Meeting Abstracts, vol. 201, 75–02 (2002).
Eker, Z. et al. Main-sequence effective temperatures from a revised mass-luminosity relation based on accurate properties. Astron. J. 149, 131 (2015).
Google Scholar
Osaki, Y. Mass-luminosity relationship in close binary systems of W Ursae Majoris type. Publ. Astron. Soc. Jpn. 17, 97 (1965).
Google Scholar
Christopoulou, P.-E. et al. New low mass ratio contact binaries in the Catalina Sky Survey. Mon. Not. R. Astron. Soc. 512, 1244–1261 (2022).
Google Scholar
Qian, S. Are overcontact binaries undergoing thermal relaxation oscillation with variable angular momentum loss?. Mon. Not. R. Astron. Soc. 342, 1260–1270 (2003).
Google Scholar
Gazeas, K. & Stepien, K. Angular momentum and mass evolution of contact binaries. Mon. Not. R. Astron. Soc. 390, 1577–1586 (2008).
Google Scholar
Gazeas, K. Physical parameters of contact binaries through 2-D and 3-D correlation diagrams. In Communications in Asteroseismology, Proceedings of “JENAM 2008 Symposium No 4: Asteroseismology and Stellar Evolution”, held on September 8–12, 2008, (eds Schuh, S. & Handler, G.) vol. 159, 129–130 (2009).
Mowlavi, N. et al. Stellar mass and age determinations-I. Grids of stellar models from z = 0.006 to 0.04 and m = 0.5 to 3.5 m\(\odot\). Astron. Astrophys. 541, A41 (2012).
Google Scholar
Eker, Z., Demircan, O., Bilir, S. & Karataş, Y. Dynamical evolution of active detached binaries on the \(\text{ logJ}_{o}\)-logM diagram and contact binary formation. Mon. Not. R. Astron. Soc. 373, 1483–1494. https://doi.org/10.1111/j.1365-2966.2006.11073.x (2006).
Google Scholar